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Nonlocal perimeters and curvature �ows on graphs with

applications in image processing and high-dimensional data

classi�cation

Imad El Bouchairi* Abderrahim Elmoataz* Jalal Fadili*

June 20, 2022

Abstract. In this paper, we revisit the notion of perimeter on graphs, introduced in [19], and we
extend it to so-called inner and outer perimeters. We will also extend the notion of total variation on
graphs. Thanks to the co-area formula, we show that discrete total variations can be expressed through
these perimeters. Then, we propose a novel class of curvature operators on graphs that uni�es both
local and nonlocal mean curvature on an Euclidean domain. This leads us to translate and adapt the
notion of the mean curvature �ow on graphs as well as the level set mean curvature, which can be seen
as approximate schemes. Finally, we exemplify the usefulness of these methods in image processing,
3D point cloud processing, and high dimensional data classi�cation.

Key words. Perimeter, total variation, graph cuts, mean curvature �ow, image processing, data
clustering, PdE on graph, data clustering.
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1 Introduction

1.1 Context and motivations

Partial Di�erential Equations (PDEs) and variational methods involving the notion of perime-
ter and curvature have and still generate a lot of interest in both continuous and discrete
domains. These notions under their di�erent local or nonlocal forms, arise not only from
sub�elds within mathematics such as di�erential geometry and analysis, but also in numerous
PDEs and objective functionals related to many applications �elds in science and engineering.

For instance, in mathematical image processing and computer vision, the notion of perime-
ter is a key idea for regularizing many ill-posed inverse problems such as denoising, restoration,
inpainting, classi�cation, segmentation, etc. Regularizing such problems is often used to �nd
suitable clusters among data, to obtain image partitions for segmentation purposes, to denoise
or to inpaint images while preserving sharp boundaries. It is worth noting that perimeters
appear in two popular variational models for image processing, namely the total variation and
the Mumford-Shah models [14, 32, 30]
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Motion by mean curvature and geometric �ows involving mean curvature play an important
role in geometry and analysis. Many models on the continuum, involving a front propagation
with a velocity depending on the mean curvature and their simulations by level set methods, are
used in di�erent application �elds such as data processing, computer vision, �uid mechanics.
For an overview and applications see the books [34, 31, 10] and references therein.

In the recent mathematical literature, nonlocal counterparts of the classical local perime-
ters and curvature �ows have been intensively studied. A notion of fractional perimeter and
nonlocal curvature was �rst introduced in [11]. The main idea of fractional perimeters is that
any point inside an Euclidean set "interact" with any point outside the set, given a func-
tional whose minimization is taken into account. Many works have then been proposed to
study functional minimization involving nonlocal perimeters or nonlocal curvature �ows, see
e.g. [1, 13] and the recent monograph [28]. In [29], the authors introduce the concepts of
perimeter and mean curvature for subsets of a metric random walk space which unify into a
broad framework those notions on locally �nite weighted connected graphs, those determined
by �nite Markov chains and some nonlocal evolution problems.

Finite graphs and networks have been widely and successfully used in a variety of �elds
such as machine learning, data mining, image analysis and social sciences where one is facing
analysis and modelling of high dimensional unstructured datasets. In this context, extending
the models and methods from variational methods and PDEs to solve problems on graphs is
an active research area; see [40, 8, 21, 22] and references therein. Many of these problems, such
as classi�cation, clustering or segmentation, can be often formulated in terms of minimizing a
graph perimeter (graph cut) or a related functional (normalized cut, ratio cut, balanced cut,
etc.). The cut size is, in this case, generally de�ned as the sum of the weights of edges between
the considered set and its complement, which turns out to be closely related to the notion of
perimeter of a set on a graph. Such problems on graphs are traditionally solved by methods
from combinatorial optimization, graph theory or spectral analysis [24, 35, 37, 42, 9].

1.2 Contributions

Our chief goal on this paper is to formulate and solve di�erent PDEs on weighted graphs
involving new discrete graph notions of total variation, perimeter and mean curvature. For
this purpose, we adopt nonlocal calculus on weighted graphs, see e.g. [21, 20, 22], which
consists in replacing continuous partial di�erential operators (e.g. gradient, divergence), with
reasonable nonlocal discrete analogues. This in turn allows to transfer many important tools
and results from the continuous setting to the discrete graph one. Based on this framework,
we revisit and extend the discrete notions of perimeter, mean curvature, Cheeger cut and total
variation, which lead us to adapt level set equations to weighted graphs. This is illustrated on
a variety of applications ranging from data �ltering to clustering and segmentation.

1.3 Outline of the paper

In Section 2 we start by reviewing some basic notations and recalling some preliminary material
necessary to our exposition. In Section 3, we revisit the notion of boundary sets on graphs as
well as discrete perimeters on graphs. In Section 4, we prove an analogue version of the co-
area formula on weighted graphs which allows us to derive relation between p-total variation
and perimeters on graphs. Equipped with these results, we introduce in Section 5 a family of
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mean curvature �ows on graphs. We then propose in Section 6 a novel class of mean curvature
level set equations on general weighted graphs. Finally, we exemplify the versatility and wide
applicability of our framework on several problems in data processing.

2 Notations and preliminaries

2.1 Basics on functions on graphs

All graphs we deal with in this paper are �nite undirected graphs. A weighted graph G =
(V,E, ω) consists of a �nite set V of N ∈ N vertices or nodes, a �nite set E ⊆ V ×V of edges,
and a (symmetric) weight function ω : V ×V → [0, 1]. The weight of an edge (u, v) is denoted
by ωuv is a measure of similarity between the vertices u and v, with the convention ωuv = 0
whenever v /∈ N (u). Here, N (u) denotes the neighborhood of a vertex u, that is the set of
vertices adjacent to u. In the following, we adopt the notation u ∼ v to denote two adjacent
vertices (i.e., (u, v) ∈ E). The degree δ(u) of a vertex u ∈ V is de�ned as δ(u) =

∑
v∼u

√
ωuv.

Throughout this paper, for a subset A of V , Ac def

= V \ A is its complement in V , and
χA : V → {0, 1} is the characteristic function of A which takes 1 on A and 0 otherwise.

Let G = (V,E, ω) be a weighted graph. We denote by H(V ) the space of real-valued
functions on the vertices of G, i.e., each function f : V → R in H(V ) assigns a real value f(u)
to each vertex u ∈ V .
For a function f ∈ H(V ) the ℓp(V )-norm of f is

∥∥f∥∥
p
=

(∑
u∈V

∣∣f(u)∣∣p) 1
p

for 1 ⩽ p < ∞, and
∥∥f∥∥∞ = max

u∈V

∣∣f(u)∣∣.
The space H(V ) endowed with the inner product ⟨f, g⟩H(V ) =

∑
u∈V f(u)g(u), f, g ∈ H(V ),

is a Hilbert space. Similarly, let H(E) be the space of real-valued functions de�ned on the
edges of the graph, i.e., each function H : E → R in H(E) assigns a real value H(u, v)
to each edge (u, v) ∈ E. The space H(E) endowed with the inner product ⟨H,F ⟩H(E) =∑

(u,v)∈E H(u, v)F (u, v), H, F ∈ H(E), is a Hilbert space.

2.2 Partial di�erence operators on graphs

Let us recall some weighted partial di�erence operators on graphs that are essential in our
paper. We refer to [21, 23, 38, 20], for more detailed description of these operators.

The weighted �nite di�erence operator of a function f ∈ H(V ), denoted by dω : H(V ) →
H(E), is de�ned on a pair of vertices (u, v) ∈ E as:

dωf(u, v) =
√
ωuv(f(v)− f(u)).

Note that this di�erence operator is linear and antisymmetric.
The adjoint of the di�erence operator dω is the linear operator d∗

ω : H(E) → H(V )
verifying ⟨dωf,H⟩H(E) = ⟨f,d∗

ωH⟩H(V ) for all f ∈ H(V ) and H ∈ H(E). Using this, it can
be easily seen that

d∗
ωH(u) =

∑
v∼u

√
ωuv(H(v, u)−H(u, v)).
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The divergence operator is de�ned as

divω = −d∗
ω.

Its action on a function in H(E) measures the net out�ow of the function at each vertex of the
graph. Each function H ∈ H(E) has a null divergence over the entire set of vertices. Indeed,
from the previous de�nitions, it can be easily shown that

∑
u∈V

∑
v∼u dωf(u, v) = 0, for all

f ∈ H(V ), and
∑

u∈V divωH(u) = 0, for all H ∈ H(E).
We introduce the weighted gradient operator on graphs∇ω acting on functions onH(V ), which
is de�ned on a vertex u ∈ V as the vector

∇ωf(u) = (dωf(u, v))v∼u.

It is clear from the properties of dω that ∇ω is linear and antisymmetric. Similarly we de�ne
the upwind and downwind weighted gradient operators on graphs ∇±

ω as

∇±
ω f(u) = (

√
ωuv (f(v)− f(u))±)v∼u,

where a+ = max(a, 0) and a− = max(−a, 0), ∀a ∈ R.
For 1 ≤ p ≤ ∞, the gradient p-norm is the seminorm

∥∥ ·∥∥
p
◦∇ω : H(V ) → (R+)N given by

∥∥∇ωf(u)
∥∥
p

=


(∑

v∼u(ωuv)
p
2

∣∣f(v)− f(u)
∣∣p) 1

p
, p ∈ [1,+∞[

maxv∼u(
√
ωuv

∣∣f(v)− f(u)
∣∣), p = +∞.

and likewise for the operator ∇±
ω instead of ∇ω. The integral of a function f in H(V ) (with

respect to the empirical measure on V ) is denoted by

I (f) =
∑
u∈V

f(u).

3 Generalized perimeters on graphs

3.1 Boundaries on graphs

We start by de�ning what we intend by a boundary of a subset A ⊂ V on an undirected graph.

De�nition 3.1. The outer and inner vertex boundaries of a subset A ⊂ V , are respectively
de�ned by

∂+A def

= {u ∈ Ac : ∃v ∈ A, v ∼ u} , (3.1)

∂−A def

= {u ∈ A : ∃v ∈ Ac, v ∼ u} , . (3.2)

The vertex boundary of A is the set

∂A def

= ∂+A ∪ ∂−A. (3.3)

An immediate consequence of these de�nitions is that ∂+Ac = ∂−A, ∂A = ∂Ac and
∂+A ∩ ∂−A = ∅.

The following proposition gives relationships between the discrete gradients of χA and the
above boundary sets, which will prove useful to de�ne discrete perimeters on graphs. Its proof
follows from simple computations and we omit it here for the sake of brevity.
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Proposition 3.1. Let G = (V,E,w) a weighted graph and A ⊂ V .

(i) For 1 ≤ p < ∞, we have the following relations:

∥∇+
ωχA(u)∥p =

(∑
v∈A

(ωuv)
p
2

) 1
p

χ∂+A(u), (3.4)

∥∥∇−
ωχA(u)

∥∥
p
=

(∑
v∈Ac

(ωuv)
p
2

) 1
p

χ∂−A(u), (3.5)∥∥∇ωχA(u)
∥∥
p
=
∥∥∇+

ωχA(u)
∥∥
p
+
∥∥∇−

ωχA(u)
∥∥
p
. (3.6)

(ii) For p = ∞, we have the following relations:

∥∇+
ωχA(u)∥∞ =

(
max
v∈A

(
√
ωuv)

)
χ∂+A(u),∥∥∇−

ωχA(u)
∥∥
∞ =

(
max
v∈Ac

(
√
ωuv)

)
χ∂−A(u),∥∥∇ωχA(u)

∥∥
∞ =

∥∥∇+
ωχA(u)

∥∥
∞ +

∥∥∇−
ωχA(u)

∥∥
∞.

(iii) Moreover, for p ∈ [1,+∞], we have∥∥∇+
ωχA(u)

∥∥
p
=
∥∥∇−

ωχAc(u)
∥∥
p
and

∥∥∇ωχA(u)
∥∥
p

=
∥∥∇ωχAc(u)

∥∥
p
.

Remark 3.1. For unweighted graphs i.e. ωuv ∈ {0, 1}, the above norms have the following
useful meanings:

� ∥∇+
ωχA(u)∥1 is the number of edges connecting the vertex u ∈ Ac with the vertices in A.

Therefore
∑
u∈V

∥∥∇+
ωχA(u)

∥∥
1
is just the size of the usual edge boundary of A.

� ∥(∇±
ωχA)(u)∥∞ coincide with χ∂±A(u), and so

∑
u∈V

∥∥∇+
ωχA(u)

∥∥
∞

(resp.
∑
u∈V

∥∥∇−
ωχA(u)

∥∥
∞) is the size of the outer (resp. inner) vertex boundary of A.

For weighted graphs i.e. ωuv ∈ [0, 1], we observe that
∑
u∈V

∥∥∇+
ωχA(u)

∥∥
∞ (resp.

∑
u∈V

∥∥∇−
ωχA(u)

∥∥
∞)

is the weighted size of the outer (resp. inner) vertex boundary of A.

Remark 3.2. The outer and inner vertex boundaries, and the vertex boundary can be equiv-
alently expressed via χA as:

∂+A =
{
u ∈ V :

∥∥∇+
ωχA(u)

∥∥
p
> 0
}
,

∂−A =
{
u ∈ V :

∥∥∇−
ωχA(u)

∥∥
p
> 0
}
,

∂A =
{
u ∈ V :

∥∥∇ωχA(u)
∥∥
p
> 0
}
.
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3.2 Perimeters on graphs

Owing to the interpretation of Proposition 3.1, we recall the de�nition of the family of weighted
perimeters on graphs introduced in [19].

De�nition 3.2. Let G = (V,E, ω). For 1 ≤ p < ∞ and A ⊂ V , the family of weighted
perimeters of A is de�ned as follows:

Per+ω,p(A)
def

= I (
∥∥∇+

wχA(·)
∥∥
p
) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

,

Per−ω,p(A)
def

= I (
∥∥∇−

ωχA(·)
∥∥
p
) =

∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

,

Perω,p(A)
def

= I (
∥∥∇ωχA(·)

∥∥
p
) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

+
∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

.

For p = ∞, the family of weighted perimeters of A ⊂ V is de�ned as follows:

Per+ω,∞(A)
def

= I (
∥∥∇+

ωχA(·)
∥∥
∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
,

Per−ω,∞(A)
def

= I (
∥∥∇−

ωχA(·)
∥∥
∞) =

∑
u∈A

(
max
v∈Ac

√
ωuv

)
,

Perω,∞(A)
def

= I (
∥∥∇ωχA(·)

∥∥
∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
+
∑
u∈A

(
max
v∈Ac

√
ωuv

)
.

It is clear from the de�nition above that, for 1 ≤ p ≤ ∞,

Perω,p(A) = Per+ω,p(A) + Per−ω,p(A), Perω,p(A) = Perω,p(Ac),

Per+ω,p(A) = Per−ω,p(Ac), Per+ω,1(A) = Per−ω,1(A) and Perω,1(A) = 2Per±ω,1(A).

Proposition 3.2. Let p ∈ {1,+∞} and Pω belongs to {Per±ω,p,Perω,p}. In the case p = ∞, we
assume that the graph is unweighted, i.e., ω is {0, 1}-valued. We have the following properties:

(i) Pω(∅) = 0;

(ii) Pω(V ) = 0;

(iii) Pω is submodular, i.e., for all A, B ⊂ V we have

Pω(A ∪ B) + Pω(A ∩ B) ≤ Pω(A) + Pω(B).

Proof : Claims (i) and (ii) are straightforward. We thus focus on claim (iii).
For p = 1, it is enough to prove the inequality for Per+ω,1 since Perω,1(A) = 2Per+ω,1(A).

We have

Per+ω,1 (A ∪ B) =
∑

u∈A∪B

∑
v∈(A∪B)c

√
ωuv
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=
∑
u∈A

∑
v∈Ac

√
ωuv +

∑
u∈B

∑
v∈Bc

√
ωuv −

∑
u∈A∩B

∑
v∈(A∪B)c

√
ωuv

−
∑
u∈A

∑
v∈B\(A∪B)c

√
ωuv −

∑
u∈B

∑
v∈A\(A∪B)c

√
ωuv,

and

Per+ω,1 (A ∩ B) =
∑

u∈A∩B

∑
v∈(A∩B)c

√
ωuv

=
∑

u∈A∩B

∑
v∈(A∪B)c

√
ωuv +

∑
u∈A∩B

∑
v∈A\(A∪B)c

√
ωuv

+
∑

u∈A∩B

∑
v∈B\(A∪B)c

√
ωuv.

Adding these two equalities we get

Per+ω,1 (A ∪ B) + Per+ω,1 (A ∩ B) =
∑
u∈A

∑
v∈Ac

√
ωuv +

∑
u∈B

∑
v∈Bc

√
ωuv

−

∑
u∈B

∑
v∈A\(A∪B)c

√
ωuv −

∑
u∈A∩B

∑
v∈A\(A∪B)c

√
ωuv


−

∑
u∈A

∑
v∈B\(A∪B)c

√
ωuv −

∑
u∈A∩B

∑
v∈B\(A∪B)c

√
ωuv


≤
∑
u∈A

∑
v∈Ac

√
ωuv +

∑
u∈B

∑
v∈Bc

√
ωuv

= Per+ω,1 (A) + Per+ω,1 (B) .

For Per±ω,∞, claim (iii) is a consequence of the following inequality, which is easy to verify,

max
v∼u

(χA∪B(v)− χA∪B(u))
± +max

v∼u
(χA∩B(v)− χA∩B(u))

±

≤ max
v∼u

(χA(v)− χA(u))
± +max

v∼u
(χB(v)− χB(u))

± ,

for all u ∈ V . I turn, the result holds for Perω,∞ since Perω,∞ = Per+ω,∞+Per−ω,∞ by de�nition.
□

As a consequence of Proposition 3.2, we have the following result for p = 1.

Corollary 3.1. Let A, B ⊂ V with A ∩ B = ∅, then

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B)− 2
∑
u∈A

∑
v∈B

√
ωuv,

Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B)− 4
∑
u∈A

∑
v∈B

√
ωuv.
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If moreover, there are no edges between A and B, i.e., ∂A∩B = ∅ or equivalently ∂B∩A = ∅,
then

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B),
Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B).

Proof : We prove the claims for Perω,1, those for Per
±
ω,1 follow from the fact that Perω,1(A)± =

1
2 Perω,1(A). By de�nition, we have

Perω,1(A ∪ B) =
∑
u∈V

∑
v∈V

√
ωuv (χA∪B(v)− χA∪B(u))

2

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v) + χB(v)− χA(u)− χB(u))

2

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u))

2 +
∑
u∈V

∑
v∈V

√
ωuv (χB(v)− χB(u))

2

+ 2
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u)) (χB(v)− χB(u))

= Perω,1(A) + Perω,1(B)− 4
∑
A

∑
B

√
ωuv.

□

Remark 3.3 (Continuum limits). There has been much interest in recent years in introducing
notions of nonlocal perimeter in terms of nonlocal functionals on the continuum and the study
of their convergence to the local perimeter (in the sense of De Giorgi). Related works can
be found in [5, 16, 7, 4, 12, 28]. One may then wonder whether our perimeter on graphs
Perω,1 has a nonlocal (resp. local) continuum limit as the number of vertices grows to in�nity
(resp. and appropriately rescaling the weight function ω). Characterizing such a limit, the
corresponding convergence rate, as well as the relation of this limit to the functionals de�ned
in the above-cited papers would in turn shed light on consistency of Perω,1 as a discrete graph-
based estimator of the perimeter. These are crucial and nontrivial questions that are beyond
the scope of this paper and that we propose to investigate in a future work.

4 Generalized p-total variation on graphs

In this section, we extend the notion of total variation, for p = 1, on graphs to upwind and
downwind p-total variations and also for p ∈ [1,∞]. We show that the result of the co-area
formula provided in [19, 40] is still valid for p = ∞ on unweighted graphs.

De�nition 4.1. Let G = (V,E, ω). For 1 ≤ p < ∞, the p-total variation of f : V → R and
its upwind and downwind versions are de�ned as follows:

TVω,p(f) = I
(∥∥∇ωf(·)

∥∥
p

)
=
∑
u∈V

(∑
v∈V

ω
p
2
uv

∣∣f(v)− f(u)
∣∣p) 1

p
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TV±
ω,p(f) = I

(∥∥∇±
ω f(·)

∥∥
p

)
=
∑
u∈V

(∑
v∈V

ω
p
2
uv

(
(f(v)− f(u))±

)p) 1
p

.

Similarly, for p = ∞, we de�ne ∞-total variations as:

TVω,∞(f) = I
(∥∥∇ωf(·)

∥∥
∞
)
=
∑
u∈V

(
max
v∈V

√
ωuv

∣∣f(v)− f(u)
∣∣)

TV±
ω,∞(f) = I

(∥∥∇±
ω f(·)

∥∥
∞
)
=
∑
u∈V

(
max
v∈V

√
ωuv(f(v)− f(u))±

)
.

In the local setting on the continuum, it is very well-known that the perimeter is linked
to the total variation via the celebrated co-area formula. Similar results have been shown in
[19, 40] on �nite graphs. For the reader's convenience, we recall this result and its extension
to the upwind and downwind p-total variations, for p ∈ {1,∞}.

Proposition 4.1. Let G = (V,E, ω) and f : V → R. Then

TV±
ω,1(f) =

∫ +∞

−∞
Per±ω,1({f > t})dt, (4.1)

TVω,1(f) =

∫ +∞

−∞
Perω,1({f > t})dt. (4.2)

Proof : For (4.2), see [40] and use De�nition 3.2. For (4.1), combine (4.2), TV±
ω,1(f) =

1
2TVω,1(f) and Per±ω,1(A) = 1

2 Perω,1(A) for any A ⊂ V . □

For p = ∞, the co-area formula holds for unweighted graphs, as the following proposition
shows. To avoid any confusion, we will replace ω by {0, 1} in the statement to stress the fact
that the considered graph is unweighted.

Proposition 4.2. Let G = (V,E, {0, 1}). For any function f : V → R, we have:

TV±
{0,1},∞(f) =

∫ +∞

−∞
TV±

{0,1},∞(χ{f>t})dt,

TV{0,1},∞(f) =

∫ +∞

−∞
TV{0,1},∞(χ{f>t})dt.

Proof : Let u ∈ V and let vu ∈ N (u) such that
∥∥∇±

{0,1}f(u)
∥∥
∞ = (f(vu) − f(u))±. It

is easy to check that
∥∥∇±

{0,1}χ{f>t}(u)
∥∥
∞ =

(
χ{f>t}(vu)− χ{f>t}(u)

)±
for all t ∈ R. It then

follows that

∥∇±
{0,1}f(u)∥∞ = (f(vu)− f(u))±

=

∫ +∞

−∞

(
χ{f>t}(vu)− χ{f>t}(u)

)±
dt

9



=

∫ +∞

−∞
∥∇±

{0,1}χ{f>t}(u)∥∞dt

Hence,

TV±
{0,1},∞(f) =

∫ +∞

−∞
I
(∥∥∇±

{0,1}χ{f>t}(·)
∥∥
∞

)
dt =

∫ +∞

−∞
Per±{0,1},∞({f > t})dt,

where we invoked De�nition 3.2 in the last equality. The second claim follows from the �rst ad
the fat that TV{0,1},∞(f) = TV+

{0,1},∞(f)+TV−
{0,1},∞(f) and Per{0,1},∞(A) = Per+{0,1},∞(A)+

Per−{0,1},∞(A) for any A ⊂ V . □

Remark 4.1. For p = ∞, the co-area formula does not hold for general weighted graphs. Here
is a counterexample. Let G = (V,E, ω) where V = {1, 2, 3} and the weight function is given
by

√
ωij =


1, if (i, j) = (1, 2),

1/4, if (i, j) = (1, 3),

1/3, if (i, j) = (2, 3).

Consider the following function de�ned on V as f(1) = 0, f(2) = 1 and f(3) = 4. By simple
computations one gets that

TV±
ω,∞(f) = 2 <

11

4
=

∫ +∞

−∞
TV±

ω,∞(χ{f>t})dt,

TVω,∞(f) = 3 < 5 =

∫ +∞

−∞
TVω,∞(χ{f>t})dt.

We close this subsection with an application of the co-area formulas to an equivalent result
on functional inequalities. For this, let G be a non-empty set of pairs (g1, g2) of functions in
H(V ), an let L be a functional generated by G as follows:

L : f ∈ H(V ) 7→ sup
(g1,g2)∈G

I (f+g1 + f−g2). (4.3)

We say that the functional L admits a quasi-linear representation. As noted in [39], many
functionals have this representation, for example:

L (f) =
(
I
(∣∣f ∣∣p))1/p , for 1 ≤ p ≤ ∞,

L (f) =
(
I
(∣∣f − I (f)

∣∣p))1/p , for 1 ≤ p ≤ ∞,

L (f) = inf
a∈R

(
I
(∣∣f − a

∣∣p))1/p for 1 ≤ p ≤ ∞.

We have the following equivalence.

Proposition 4.3. Let λ > 0, and suppose that either p = 1 or p = ∞ and the graph is
unweighted. Then the following are statements are equivalent:

10



(i) L (f) ≤ λTV±
ω,p(f) for all f ∈ H(V ).

(ii) L (χA) ≤ λTV±
ω,p(χA) and L (−χA) ≤ λTV±

ω,p(−χA), for all A ⊂ V .

Proof : The implication (i) =⇒ (ii) is straightforward: it is enough to apply (i) to f = χA

and f = −χA.
Conversely, suppose that (ii) and let g1, g2 ∈ G. It is not di�cult to see that

TV±
ω,p(χA) = I (

∥∥∇±
ωχA(·)

∥∥
p
) = I (

∥∥∇±
ω (−χAc) (·)

∥∥
p
) = TV±

ω,p(−χAc),

for allA ⊂ V . Therefore, the co-area formula in Proposition 4.1 for p = 1 (resp. Proposition 4.2
for p = ∞ and the graph is unweighted) implies

TV±
ω,p(f) =

∫ +∞

0
I (
∥∥∇±

ωχ{f>t}(·)
∥∥
p
)dt+

∫ 0

−∞
I (
∥∥∇±

ωχ{f>t}(·)
∥∥
p
)dt

=

∫ +∞

0
I (
∥∥∇±

ωχ{f>t}(·)
∥∥
p
)dt+

∫ 0

−∞
I (
∥∥∇±

ω (−χ{f≤t})(·)
∥∥
p
)dt

≥ λ−1

∫ ∞

0
L (χ{f>t})dt+ λ−1

∫ 0

−∞
L (−χ{f≤t})dt

≥ λ−1

∫ ∞

0
I
(
χ{f>t}g1

)
dt+ λ−1

∫ 0

−∞
I
(
χ{f≤t}g2

)
dt

= λ−1
(
I
(
f+g1 + f−g2

))
.

We get the desired inequality by taking the supremum over all function g1, g2 ∈ G. □

5 Mean curvature on graphs

We here introduce a class of mean curvatures on graphs based on the de�nition of the nonlocal
perimeters on graphs de�ned above. As in the nonlocal continuum case [13], we adopt a
variational formulation and de�ne the mean curvature as the �rst variation of the perimeter.
We recall that δ(u) is the degree of a vertex u ∈ V .

De�nition 5.1. Let G = (V,E, ω), A ⊂ V , and u0 ∈ V . We de�ne the upwind and downwind
mean curvatures of A at u0 as

κ+ω,1(u0,A)
def

=
Per+ω,1(A ∪ {u0})− Per+ω,1(A)

δ(u0)
,

κ−ω,1(u0,A)
def

=
Per−ω,1(A)− Per−ω,1(A \ {u0})

δ(u0)
.

The mean curvature of A ate u0 ∈ V is de�ned as

κω,1(u0,A)
def

=

{
κ+ω,1(u0,A), if u0 ∈ Ac,

κ−ω,1(u0,A), if u0 ∈ A.

11



From De�nition 3.2, it is straightforward to show that

Per+ω,1(A ∪ {u0})− Per+ω,1(A) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v if u0 ∈ Ac,

0 if u0 ∈ A,

and

Per−ω,1(A)− Per−ω,1(A \ {u0}) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v if u0 ∈ A,

0 if u0 ∈ Ac.

We have then proved the following explicit formula of the mean curvature on a graph.

Proposition 5.1. Let G = (V,E, ω). For all A ⊂ V and all u0 ∈ V , we have:

κω,1(u0,A) =

∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v

δ(u0)

= −
∑

v∈V
√
ωu0v(χA(v)− χAc(v))

δ(u0)
.

(5.1)

Before proceeding, a few remarks are in order.

Remark 5.1. (i) One can see that our de�nition implies a curvature which is bounded and
belongs to [−1, 1]. The reason lies in the normalization by the degree of the associated
vertex.

(ii) In view of (5.1), we can extend this de�nition of mean curvature to any function f on
graphs through its level sets. Indeed, let f : V → R and u0 ∈ V . The mean curvature
κω,1 (we keep the same notion) of f at u0 on a graph G = (V,E, ω) is de�ned as

κω,1(u0, f)
def

= κω,1(u, {f ≥ f(u0)}) (5.2)

= −
∑

v∈{f≥f(u0)}
√
ωu0v −

∑
v∈{f<f(u0)}

√
ωu0v

δ(u0)

= −
∑

v∈V
√
ωu0v sign(f(v)− f(u0))

δ(u0)
,

where

sign(r) =

{
1, if r ≥ 0,

−1, if r < 0.

(iii) Formula (5.1) can also be interpreted as a graph version of the nonlocal J-mean curvature
introduced in [28, De�nition 3.2], which is given, for a measurable set E ⊂ Rn and n ≥ 2
by

HJ
∂E(x)

def

= −
∫
Rn

J(x− y)(χE(y)− χEc(x))dy, x ∈ Rn,

where J is a nonnegative radially symmetric measurable function in L1(Rn). For ε > 0,

let Jε(x) = ε−nJ(x/ε) be the rescaled kernel, and set CJ = 2
(∫

Rn J(x)|xn|dx
)−1

. It
was shown in [28, Theorem3.7] that for E with smooth enough boundary ∂E, we have

lim
ε↘0

CJ

ε
HJε

∂E(x) = (n− 1)κ(x),

12



for every x ∈ ∂E, where κ(x) is the (local) mean curvature of ∂E at x. de�ned by

κ(x) = −div(nx), (5.3)

where nx, x ∈ ∂E, is the unit normal vector �eld.

(iv) Inspired by the local formula (5.3) on the continuum, let us discuss a discrete analogue
of it on graphs. This idea was �rst proposed in [40]. Let G = (V,E, ω) be a weighted
graph. For a nonempty set A ⊂ V , let

κlocω,1(u,A) = divω(nA)(u) =

{∑
v∈Ac

√
ωuv, if u ∈ A,

−
∑

v∈A
√
ωuv, if u ∈ Ac,

(5.4)

where nA is the discrete normal vector de�ned as

nA(u, v) =


1 if u ∼ v and (u, v) ∈ A×Ac,

−1 if u ∼ v and (u, v) ∈ Ac ×A,

0 otherwise.

Observe in passing that the formula given in [40] is di�erent from (5.4). The di�erence
essentially lies in the de�nition of the divergence operator they consider. Observe also
that the sign of the mean curvature given by (5.4), depends only on the side that contains
the vertex u and not on the weight function. This is in stark contrast with the mean
curvature introduced in De�nition 5.1 (see also Proposition 5.1). This has impact in
applications and it would be worth getting deeper insight into these di�erences in a future
work. In the rest of this work, and especially in our numerical experiments, we will stick
with De�nition 5.1.

(v) A natural question that comes to mind is whether the mean curvature on graphs in
Proposition 5.1 can be given a limit in an appropriate sense as the number of vertices
grows to in�nity. In particular, can one prove rigorously that it has a continuum local
limit as N grows and by properly rescaling the weight function ω with a vanishing width,
and whether this limit relates to the (local) mean curvature (5.3). In fact, the same
questions arise also on other geometrical quantities including the perimeter. These are
important questions that are beyond the scope of this paper and deserve much deeper
investigation that we leave to a future work.

6 Level set formulation of mean curvature �ows on graphs

Equipped with our graph versions of di�erential operators and mean curvature, we are now
ready to adapt to graphs a large class of PDEs involving the mean curvature �ow or its variants.
In this section, we consider two general models used extensively to solve several tasks in image
processing and computer vision:

1. The level set method for power mean curvature �ow which �nds applications in image
denoising, enhancement or simpli�cation;
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2. The level set method for active contours with application to image segmentation and
object detection.

The transposition of these models on graphs will naturally lead to partial di�erence equations
(coined PdE's for short) with coe�cients that depend on the data and the graph weight
function.

6.1 The continuum domain case

The level set approach was �rst proposed by Osher and Sethian [34] to model evolving fronts
with curvature; see also the monographs [31, 10]. The idea is to represent the evolving front
as a level set of a function ϕ(x, t) for x ∈ Ω ⊂ Rn and t is the time. The initial front Γ0 is
given by Γ0 = {x ∈ Ω : ϕ(x, 0) = ϕ0(x) = 0}, where ϕ0 is a smooth function on Ω, and the
evolving front at any time t > 0 is given by Γt = {x ∈ Ω : ϕ(x, t) = 0}. The evolving front is
governed by the following equation:{

∂ϕ
∂t (x, t) = c(x, ϕ, t)

∥∥∇ϕ(x, t)
∥∥
2
, (x, t) ∈ Ω×]0, T ]

ϕ(x, 0) = ϕ0(x), x ∈ Ω,
(6.1)

where c(x, ϕ, t) is a normal velocity governing the motion.

6.1.1 Level set power mean curvature �ow

Making the choice
c(x, ϕ, t) =

∣∣κ(x, t)∣∣α−1
κ(x, t), (6.2)

where α ∈ [0, 1] and κ is the usual mean curvature, one gets the level set power mean curvature
equation, [33]. In particular, for α = 1, (6.1) corresponds to the mean curvature �ow which
�nds important applications in image processing [34], while the case where α → 0, one gets
the so called conditional erosion/dilatation based on the sign of the mean curvature used in
mathematical morphology. A variant for positive/negative curvature �ows are used in [27] for
image enhancement in addition to noise removal.

6.1.2 Level set active contours

This corresponds to the situation in (6.1) where ϕ0 is an implicit representation of a front
(surface) and the following choice of velocity

c(x, ϕ, t) = div

(
∇ϕ(x, t)∥∥∇ϕ(x, t)

∥∥
2

)
+ F (I, ϕ(x, t)), (6.3)

where I : Ω → R is the image to be segmented and F is a halting function of the active contour
model. The level set formulation of active contours is one of the most popular variational
models in image segmentation. Its success is due to strong mathematical properties, e�cient
numerical schemes and ability to handle topological changes naturally.

The Chan-Vese model for active contours [15, 41] o�ers a �exible method which localizes
objects whose boundaries are not well-detected by the gradient. This model corresponds to a
special case of (6.3) where the halting function takes the form

F (I, ϕ(x, t)) = −λ1(I − c1)
2 + λ2(I − c2)

2 (6.4)
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where λ1, λ2 > 0 are the �delity parameters, and c1 (resp. c2) is the average of I on the
superlevel set {x ∈ Ω : ϕ(x, t) ≥ 0} (resp. on the sublevel set {x ∈ Ω : ϕ(x, t) ≤ 0}).

6.2 Level set power mean curvature �ow on graphs

Let us now turn to translating on graphs the PDE (6.1) with the velocity (6.2). Let G =
(V,E, ω) be a weighted graph. Our formulation of the level set power mean curvature equation
on G is

∂ϕ
∂t (u, t) =

(∣∣κω,1(u, ϕ(·, t))∣∣α−1
κω,1(u, ϕ(·, t))

)+ ∥∥∇+
ωϕ(u, t)

∥∥
p
,

−
(∣∣κω,1(u, ϕ(·, t))∣∣α−1

κω,1(u, ϕ(·, t))
)− ∥∥∇−

ωϕ(u, t)
∥∥
p
, (u, t) ∈ V×]0, T ],

ϕ(u, 0) = ϕ0(u), u ∈ V

(6.5)

where ϕ0 ∈ H(V ), α ∈ [0, 1], p ∈ [1,+∞], and we recall from (5.2) that

κω,1(u, ϕ(·, t)) = κω,1 (u, {ϕ(·, t) ≥ ϕ(u, t)}) .

To implement numerically (6.5), we use a simple forward/explicit Euler discretization
scheme in time. Let 0 < t1 < t2 < · · · < tℓ = T be an equispaced partition of [0, T ], T > 0,
i.e., ti = i∆t for i ∈ [ℓ] with ∆t = T

ℓ . Denote ϕi(u) = ϕ(u, i∆t). Starting at ϕ0 = ϕ0, we then
propose the iterative scheme

ϕi+1(u) = ϕi(u) + ∆t

((∣∣κω,1(u, ϕi(u))
∣∣α−1

κω,1(u, ϕ
i(u))

)+ ∥∥∇+
ωϕ

i(u)
∥∥
p

−
(∣∣κω,1(u, ϕi(u))

∣∣α−1
κω,1(u, ϕ

i(u))
)− ∥∥∇−

ωϕ
i(u)

∥∥
p

)
. (6.6)

Note that for p = ∞, we recover as a special case the scheme considered in [19, Section 3.3].
Another case of interest is when when α = 0 and p = ∞, in which case it is straightforward

to see that (6.6) reads

ϕi+1(u) =

{
ϕi(u) + ∆t

∥∥∇+
ωϕ

i(u)
∥∥
∞, if κω(ϕ

i(u)) ≥ 0,

ϕi(u)−∆t
∥∥∇−

ωϕ
i(u)

∥∥
∞, if κω(ϕ

i(u)) < 0.
(6.7)

For the choice ∆t = 1, the update (6.7) has a nice interpretation in mathematical morphology:
it is a conditional erosion/dilatation on graphs based on the sign of the mean curvature.

6.3 Level set active contour on graphs

For G = (V,E, ω) a weighted graph, a front evolving on G is a subset A0 ⊂ V , and is implicitly
represented by a level set function ϕ0 = χA0 − χAc

0
. In other words, ϕ0 takes the value 1 on

A0 and −1 on its complement. Mimicking the PDE (6.1) on the continuum with the velocity
(6.3), the front propagation equation on G is given by{

∂ϕ
∂t (u, t) = c(u, ϕ, t)

∥∥∇ωϕ(u, t)
∥∥
p
, (u, t) ∈ V×]0, T ]

ϕ(u, 0) = ϕ0(u), u ∈ V,
(6.8)
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where c(u, ϕ, t) is given by

c(u, ϕ, t) = κω,1(u, ϕ(·, t)) + F (I, ϕ(u, t)), (6.9)

with halting function F and I : V → R is the function on V to be segmented. Typically we
will take in our numerical experiments F as in (6.4), where now c1 (resp. c2) is the average of
I on {u ∈ V : ϕ(u, t) ≥ 0} (resp. on {u ∈ V : ϕ(u, t) ≤ 0}).

Yet another form can be proposed based on discrete dilation and erosion on graphs. Indeed,
the front propagation can be expressed as a morphological process with the following sum of
dilation and erosion

∂ϕ
∂t (u, t) = (c(u, ϕ, t))+ ·

∥∥∇+
ωϕ(u, t)

∥∥
p

− (c(u, ϕ, t))− ·
∥∥∇−

ωϕ(u, t)
∥∥
p
, (u, t) ∈ V×]0, T ]

ϕ(u, 0) = ϕ0(u), u ∈ V.

(6.10)

As before, Euler explicit/forward discretization in time then leads to the iterative scheme

ϕi+1(u) = ϕi(u) + ∆t

(
c(u, ϕi, ti)

+
∥∥∇+

ωϕ
i(u)

∥∥
p
− c(u, ϕi, ti)

−∥∥∇−
ωϕ

i(u)
∥∥
p

)
(6.11)

=

{
ϕi(u) + ∆t c(u, ϕi, ti)

∥∥∇+
ωϕ

i(u)
∥∥
p
, if c(u, ϕi, ti) ≥ 0,

ϕi(u) + ∆t c(u, ϕi, ti)
∥∥∇−

ωϕ
i(u)

∥∥
p
, if c(u, ϕi, ti) < 0.

(6.12)

The last form of the update highlights the fact that one only has to compute one mor-
phological gradient at each iteration, for a given vertex. Moreover, one can remark that at
initialization, given the form of ϕ0 above, both two gradients are zero everywhere, except for
vertices which lies in the inner and outer boundaries of A0. Then, the set of vertices to be
updated at each iteration can be restricted to two inner and outer narrow bands, initialized
respectively with ∂−A0 and ∂+A0 and updated over time with neighbours of vertices already
in them. The narrow bands growth follows the front evolution, and to avoid that they become
too large, the narrow bands are reinitialized periodically. Clearly, for a given period K ∈ N,
the front is given by the set Ak =

{
u ∈ V : ϕi(u) > 0

}
if k = i/K ∈ N, and the associated

level set function is reinitialized to ϕk(u) = χAk
(u) − χAc

k
(u). Then, the inner and outer

narrow bands are respectively reinitialized as ∂−Ak and ∂+Ak.

Remark 6.1. It is worth observing that from the general form (6.10), one can also obtain a
graph version of the Eikonal equation which describes a morphological erosion process. Indeed,
taking constant velocity c(u, ϕ, t) = 1, zero initial data, and de�ning ϕ(u, t) = t− φ(u) for all
u ∈ V , (6.10) reads {∥∥∇−

ωφ(u)
∥∥ = 1, u ∈ V0,

φ(u) = 0, u ∈ V \ V0,
(6.13)

where V0 ⊂ V . Numerical schemes and algorithms to solve such equation have provided in
[17]. This equation will be used in our numerical experiments on segmentation.
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7 Numerical experiments

In this section, we describe our numerical experiments to illustrate the applicability and �ex-
ibility of our framework for data denoising and segmentation. This allows us to handle in
the same framework both images, 3D point clouds ad other high dimensional data. Di�erent
graph structures and weight functions are also used to show the �exibility of our approach.

7.1 Weighted graph construction

Given N data points {xi}i∈[N ] on some space X , there exist several popular methods to
transform this dataset into a weighted graph structure. Each xi is considered as a vertex
ui ∈ V of a graph. The key now is to construct the adjacency structure of the graph, i.e.,
the set of edges E and weight function ω. This amounts to capturing the neighbourhood
relationships between the data points by typically exploiting some similarity between features
computed from the points {xi}i∈[N ]. This is clearly application-dependent and we will describe
some concrete examples shortly.

In the particular case of images, graph construction methods based on spatial neighbour-
hoods are particularly well-adapted to capture the geometry of the space. The spatial neigh-
bourhood can also be augmented by similarity of feature values de�ned on the pixels. Typical
types of graphs used in practice are:

� Grid graphs: these are the most natural ones to describe an image with a graph. The
points {xi}i∈[N ] are then the coordinates of the image pixels lying on a cartesian grid.
Each pixel/point is connected by an edge to its spatial adjacent neighbours. Classical grid
graphs are 4-adjacency grid graphs and 8-adjacency grid graphs. Larger neighbourhoods
can be used to obtain nonlocal grid graphs.

� Region adjacency graphs (RAGs): the vertices of these graphs correspond to regions in
an image and edges represent region spatial adjacency relationships.

� k-nearest neighbour graphs (k-NNGs): in these graphs, (X , d) is a metric space, and each
vertex ui ∈ V , or equivalently each data point xi ∈ X , is connected to its k-nearest neigh-
bours according to the distance d, and possibly a distance between features computed
at {xi}i∈[N ]. Such construction implies building a directed graph as the neighbourhood
relationship is not necessarily symmetric. Nevertheless, an undirected graph can be ob-
tained by adding an edge (u, v) whenever u is among the k-nearest neighbours of v or v
is among the k-nearest neighbours of u.

� k-extended RAGs (k-ERAGs): these are RAGs augmented by a k-NNG. Each vertex
corresponds to a region which is connected to its spatially adjacent regions and to its k
most similar regions in the metric d.

The weight function is computed as a function of a similarity measure s : E → R+ as
follows

ωuv =

{
s(u, v), if (u, v) ∈ E,

0, otherwise.
(7.1)

Examples for common similarity functions are the following.
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� s0(u, v) = 1: this corresponds to a simple unweighted graph.

� s1(u, v) = exp(−d(u, v)2/σ2), where V = {xi}i∈[N ], (X , d) is a metric space, and σ > 0
is a scale parameter that represents the size of the neighbourhood.

� Patch-based methods: let p : V = {xi}i∈[N ] ⊂ X ∈ Rm be a patch extractor, i.e., a
mapping acting on the data points and returning an m-dimensional real feature vector.
In many applications we have in mind, p extracts the spatial coordinate, the values of a
function de�ned on {xi}i∈[N ], etc. Let h be a metric on Rm. In this context, a similarity
function can be chosen as

s2(u, v) = exp(−h(p(u), p(v))2/σ2), with σ > 0.

Observe that s2 specializes to s1 when p is the identity map.

7.2 Mean curvature �ow

We start by illustrating the discrete mean curvature �ow scheme (6.6) for denoising real image
data, de�ned on a two-dimensional cartesian grid and then on a 3D point cloud.

Figure 1 depicts a comparison between the denoising results of a noisy image using (6.6)
with p = 2 and two graph structures. The row with images (b-c-d) shows the results obtained
with a 4-adjacency grid graph, which captures local interactions, and a weight function ω taken
as in (7.1) with s = s0. The row with images (e-f-g) shows the results obtained with a graph
built as a k-NNG with a 16× 16 spatial neighbourhood window and a weight function taken
as in (7.1) with s = s2, h the Euclidean distance and σ = 20. The feature space dimension m
is the size of the patch: 5 × 5. Clearly, allowing long-range interaction thanks to the second
graph structure better preserves the image details.

Figure 2 displays denoising results of a real color image using again (6.6) with p = 2 and
two graph structures. For the 4-adjacency grid graph, we tested a weight function ω taken
as in (7.1) with two choices of the similarity function: s = s0 and s = s1. The second graph
is built using a k-NNG with a 11 × 11 spatial neighbourhood window and a weight function
taken as in (7.1) with s = s2, h the Euclidean distance and σ = 20. The feature space is R25×3

corresponding to color images with patch size 5 × 5. These results show the e�ects of the
similarity measure on the results. As in the previous experiment, the long-term interactions
and patch-based weight functions give better results.

Te �exibility of our framework allows to handle with little e�ort functions on 3D point
clouds. Figure 3 shows denoising results obtained in this setting. We used two graph structures,
both built from the same 3D point clouds using a k-NNG, with k = 8 and s0 as a similarity
measure for the �rst one. For the second one, we took k = 10 and s(u, v) = exp(−

∥∥ϕ0(u) −
ϕ0(v)

∥∥2/102), where ϕ0 is the initial datum taking values in the RGB cube.

7.3 Active contour model on graphs

7.3.1 Image segmentation using grid and k-NN graphs

We �rst illustrate the application to images of (6.11) with velocity (6.9), where F is set as
in (6.4) (Chan-Vese model). Figure 4 and Figure 5 show the segmentation results with two
di�erent graph structures, respectively. Figure 4, we used a 4-adjacency grid graph where each
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Figure 1: Gray scale image denoising. (a): observed image. (b,c,d): denoising results using
mean curvature on a 4-adjacency grid graph after 5, 10, 20 iterations respectively. (e,f,g):
denoising results using mean curvature on a k-NNG graph with patch-based weights after
5, 10, 20 iterations respectively.

pixel is characterized by its color feature vector. In Figure 5, we used a k-NNG with a 11× 11
neighbourhood, and each pixel is characterized by a 5×5 patch of color feature vectors. In each
case, the weight function is chosen as in the previous section. In Figure 4, we also tested the
k-NNG though the results are not shown. Given that the image of Figure 4 does not contain
textures, there was no signi�cant di�erence between the segmentation results obtained by the
two types of graphs. On the other hand, with the texture of the grass in the background of
the image in Figure 5, the k-NNG with patch-based similarity leads to a better segmentation
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(a) Original image (b)

(c) (d)

Figure 2: Color scale image denoising. (a): observed image. (b) and (c): denoising results
using mean curvature on a 4-adjacency grid graph with respectively, s0 and s1 as similarity
measures. (f): denoising result using mean curvature on a k-NNG graph with patch-based
similarity measure s2.

result. The bottomline is that k-NNG is a better choice and leads to better results thanks to
its nonlocal aspect allowing to capture long range dependencies such as in textures.

7.3.2 Image segmentation using RAG

We here combine the graph-based versions of Eikonal equation (6.13) and active contours
(6.11) for segmentation purposes. The active contour evolution (6.11) is performed on a RAG
obtained from a superpixel decomposition of the image. Such decomposition is performed
using a regular-grid of seeds, which are dilated on the image 4-adjacency-grid graph using the
graph version of the Eikonal equation (6.13); see [18] for details. The resulting region map is
then transformed in a second graph (the RAG) where each node is associated with a superpixel
and edges represent the adjacency between superpixels. For the 4-adjacency-grid graph, the
similarity function is computed from pixel colors, while it uses region mean intensity for the
RAG. We then apply (6.13) on the RAG. Finally, the contour at convergence of the algorithm
is transposed from the graph to the region map and then to the original image. Figure 6
depicts each step of the whole process.

7.3.3 Data clustering

In this experiment, we show that our level set active contour method can also be used for data
clustering purposes, when data are represented as point clouds. To do so, we have selected a
small part of the MNIST dataset [26]. This dataset is composed of handwritten digits, stored
as images. The subset we choose is composed of 2 classes : 0's and 1's. For illustration we
picked up 200 images of each class. We constructed a k-NN graph on this dataset, with k = 5.
To compute the distance between two images, we used the two-sided tangent distance [25],
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(a) Original image

(b) (c)

Figure 3: Colored point cloud denoising with mean curvature �ow. (a): observed image.
(b): denoising result using a k-NNG with k = 8 and ω with the similarity measure s0. (c):
denoising result using a k-NNG with k = 10 and ω with a feature-based similarity measure
(see text for details).

(a) Initial contour (b) Final contour

Figure 4: Segmentation using (6.11) with velocity (6.9) and Chan-Vese model. The graph
used is a 4-adjacency grid graph and each pixel is characterized by its color feature vector.
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(a) Initial contour (b) Final contour

Figure 5: Segmentation using (6.11) with velocity (6.9) and Chan-Vese model. The graph is
a k-NNG and each pixel is characterized by its color feature vector.

(a) RAG, front and bands (b) Contour reported on im-
age

(c) After one iteration (d) After one iterations

(e) After 82 iterations (f) After 82 iterations

Figure 6: Illustration of active contours on a RAGG. The RAG is built from a superpixel
decomposition of the initial image, where each region is connected to its adjacent regions. The
weight and velocity functions are computed from the mean color inside regions. Left column
shows the RAG, with the propagating front in blue and candidate bands in red (inner) and
green (outer). Right column shows the initial image with the propagating front transposed
from the RAG (using the boundaries of the superpixels).
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an extension of the tangent distance used in [36], especially well suited for this dataset. The
graph and several iterations of the scheme are shown in Figure 7. The scheme starts with an
initial random partition.

Figure 7: Application of the level set active contours to data clustering. The graph is built
from a subset of the MNIST database, as a k-NNG with k = 5. The similarity function
function is computed using two-sided tangent distance and the velocity is de�ned according
to (6.9) where F as in the Chan-Vese model. Each cluster is represented by a front, randomly
initialized.

7.3.4 High dimensional semi-supervised data classi�cation

In this last experiment, we have tested the performance of our proposed framework when ap-
plied to semi-supervised classi�cation on three standard databases from the literature: MNIST
[26], OPTDIGITS [3], and PENDIGITS [2]. We compare two kinds of velocities. The �rst
one is that of active contours (6.9) (denoted as AC). The second one is propagation using the
Eikonal evolution equation on graphs (6.13) (denoted as EE). For these databases we merged
both the training and the test sets (as performed in [6]), resulting in datasets of 70000 in-
stances, 5620 instances, and 10992 instances, for MNIST, OPTDIGITS, and PENDIGITS,
respectively. In our tests, we propose also, to re�ne the classi�cation results of EE with AC
algorithms. The re�nement consists in applying EE with an initial condition, and then ap-
plying AC with the output of EE as an initial condition. The corresponding result will be
coined EE+AC. In Table 1, we compare the performance of these three methods in terms of
classi�cation accuracy. We vary the amount of initial seeds (pre-labeled data) from 1% to
10%, and compute the average classi�cation accuracy over 10 runs of each algorithm.

Acknowledgment. The �rst author has been supported by MIDIPATH project. The second
author has been supported by the French Research Agency through the SUMUM project (ANR-17-
CE38-0004).
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seeds datasets EE AC EE+AC

1%
MNIST

OPTDIGITS
PENDIGITS

97.45%
95.22%
95.75%

98.20%
96.82%
95.71%

98.24%
97.10%
96.25%

2%
MNIST

OPTDIGITS
PENDIGITS

97.64%
97.41%
97.38%

98.24%
97.88%
97.06%

98.29%
97.92%
98.56%

5%
MNIST

OPTDIGITS
PENDIGITS

97.95%
98.09%
98.25%

98.33%
98.38%
98.30%

98.37%
98.35%
98.56%

10%
MNIST

OPTDIGITS
PENDIGITS

98.19%
98.41%
98.94%

98.39%
98.64%
98.92%

98.45%
98.51%
99.10%

Table 1: Average classi�cation accuracy on the three datasets for the three methods.
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