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Game-theoretic p-Laplacian or normalized p-Laplacian operator is a version of classical

variational p-Laplacian which was introduced recently in connection with stochastic games

called Tug-of-War with noise [37]. In this paper, we propose an adaptation and general-

ization of this operator on weighted graphs for 1 6 p 6 ∞. This adaptation leads to a

Partial difference operator which is a combination between 1-Laplace, infinity-Laplace and

2-Laplace operators on graphs. Then we consider the Dirichlet problem associated to this

operator and we prove the uniqueness and existence of the solution. We show that the

solution leads to an iterative nonlocal average operator on graphs. Finally, we propose to

use this operator as a unified framework for interpolation problems in signal processing

on graphs, such as image processing and machine learning.

Key Words: Game p-Laplacian,graph signal processing ,interpolation problems ,image pro-

cessing ,machine learning ,Tug-of-War games

1 Introduction

1.1 Introduction and motivations

The local and nonlocal p-Laplace and infinity-Laplace operators has been well studied in

both the discrete and continous setting. These operators in the local continuous setting

play an important role in geometry and Partial Differential Equations (PDEs) and en-

ter in many mathematical problems and models for applications in physics, mechanics,

image processing or computer vision. For an introduction and survey on this topics see

[29, 17] and references therein. Nonlocal diffusion problems involving nonlocal continuous

version of p-Laplacian and infinity-Laplacian are of great interest of pure mathematical

problems [4, 13], they arise also in a wide variety of applications including biology, image

processing and computer vision. For theory and applications see [27] and the recent book

[4] and references therein. On the other hand the discrete Laplacian or graph Laplacian
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has been extensively used in machine learning for clustering [14] and dimension reduc-

tion [12]. The graph p-Laplacian, generalization of the standard Laplacian has started to

attract attention from mathematical, machine learning, image and manifolds processing

community. See [28, 9, 20, 8] and references therein.

The game theoretic p-Laplacian is another version of the continuous p-Laplacian, it

was recently introduced in connection with the stochastic game model called Tug-of-

War with noise [36]. A part of interest of this class of operator is that it contains as

particular cases the ∞-Laplace operator for p = ∞, the mean curvature operator for

p = 1, and a multiple of the ordinary Laplace operator for p = 2. In the homogeneous

case, the game p-Laplacian equation coincides with the variational p-Laplacian equation,

for which several approximations have been proposed. Some of these schemes are based

on finite element [6]. Several finite difference approximation schemes were proposed for

the game p-Laplacian for p = 1, p =∞, and p > 2 [35]. More recently an approximation

scheme based on the semi Lagrangian scheme was proposed in [24]. One can also quote the

approximations of the normalized p-Laplacian for 1 6 p 6∞ by statistical operators [38].

However, the most of these discretizations are proposed for regular domains. Recently

there has been a growing interest in the transcription and the adaptation of PDEs on

general domains, or graph of arbitrary topology. First as a subject of its own interest.

Second, for their potential and existing applications.

Indeed, by now, more and more contemporary applications deal with a large amount of

data which are collected in the form of graphs, networks, and functions on these graphs

(images, surfaces, meshes, social networks,...). Processing and analyzing these kinds of

data is a major challenge for both image and machine learning communities. Hence, it is

very important to transfer many mathematical tools such as PDEs or wavelets, which are

initially developed on usual Euclidean space and proven to be efficient for many problems

and applications dealing with usual image and signal domains, to graph and networks.

In previous works we have used the framework of Partial difference Equations (PdEs)

which enables us to translate and adapt continuous PDEs and variational methods to the

setting of graphs [20, 9, 40, 7, 41]. Conceptually, the idea of introducing PdEs is to mimic

continuous PDEs on graph structures by consistently adapting important mathematical

concepts, e.g., integration and differentiation. By doing so one is able to directly translate

most of the established techniques for PDEs and in particular for the p-Laplace operator

to graphs. Moreover, in case of evolution PdEs this framework provides models in which

spatial integration and temporal evolution can be handled separately. Indeed, in this

case there is no need for a spatial discretization and one gains a unification of local

and nonlocal models [21]. In our previous works we have also introduced a family of

p-Laplacian operators (isotropic and anisotropic) on graphs in divergence form [9] within

this framework. For general formulation of p-Laplacian and ∞-Laplacian on graphs with

gradient terms, see also [22, 23].

In this paper, we propose an adaptation and generalization of the game p-Laplacian on

weighted graphs of arbitrary topology using the framework of Partial difference Equations

(PdEs) [20, 40]. This adaptation leads to a new class of p-Laplacian on graph in non

divergence form which interpolates between nonlocal 1-Laplacian, nonlocal ∞-Laplacian

and nonlocal 2-Laplacian, on graphs. We show the connections of this operator with local
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and nonlocal continuous normalized p-Laplacian. Then we consider the Dirichlet problem

associated with these operators and we prove the existence and the uniqueness of the

solution. We show that our proposed operator is an extension on weighted graphs of the

well known numerical approximation of Oberman of the 1-Laplacian and ∞−Laplacian

[35]. We also show the connection with local and nonlocal Tug-of-War games. In the

continuous domain, p-harmonic functions are used to interpolate functions defined on

euclidean domains. Their extension on graph allows to express p-harmonic functions on

irregular domains and to used these functions as a unified framework to interpolate and

solve various problems both in image processing (such as inpainting), and in machine

learning (e.g. semi-supervised classification). Finally, we propose to use the game p-

Laplacian on graph as a framework to solve many interpolation problems on graph with

applications in image processing and machine learning.

1.2 Game p-Laplacian

We recall that the variational p-Laplacian of a function f : Ω ⊂ IRN → IR is given for

1 6 p <∞ as

∆pf = div(|∇f |p−2.∇f). (1.1)

In the case where p =∞, it is traditionally given by ∆∞f =
n∑
i,j

∂f
∂xi

∂f
∂xj

∂2f
∂xi∂xj

.

The game p-Laplacian, or normalized p-Laplacian, recently introduced in [37] to model

a stochastic game called Tug-of-War game is written as, for 1 6 p <∞:

∆N
p f =

1

p
|∇f |2−p . div(|∇f |p−2.∇f). (1.2)

When p =∞, the normalized p-Laplacian is written as:

∆N
∞f = |∇f |−2∆∞f. (1.3)

∆N
p f is called normalized since it is homogeneous of degree 1, i.e. ∆N

p (t f) = t . ∆N
p f

for t ∈ IR in contrast to the variational p-Laplacian which is homogeneous of degree p−1.

Thus, the parabolic problems involving the normalized p-Laplacian are scaling invariant.

This is a useful attribute in the context of image processing. If f is a smooth function,

equation (1.2) can be rewritten as:

∆N
p f =

(p− 2)

p
∆N
∞f +

1

p
∆f

=
(p− 2)

p
∆N
∞f +

2

p
∆N

2 f

= α(p)∆N
∞f + β(p)∆N

2 f

(1.4)

with α(p) = (p− 2)/p and β(p) = 2/p.

The game p-Laplacian for p = 1 can be written as:

∆N
1 f = div(

∇(f)

|∇(f)|
)|∇(f)|. (1.5)
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As ∆N
1 f = ∆−∆N

∞f , equation (1.4) can be rewritten as:

∆N
p f = α′(p)∆N

2 f + β′(p)∆N
1 f, (1.6)

with α′(p) = 2(p−1)
p and β′(p) = 2−p

p .

One can remark that for the equation (1.4), to get both the α and β functions positive,

we set the value interval for p as 2 6 p 6∞. Similarly, for (1.6), the positive value interval

for α′ and β′ is 1 6 p 6 2.

The game p-Laplacian for 1 6 p 6∞ can be rewritten as:

∆N
p f =


2

p
∆N

2 f +
p− 2

p
∆N
∞f for 2 6 p 6∞

2(p− 1)

p
∆N

2 f +
2− p
p

∆N
1 f for 1 6 p 6 2

(1.7)

1.3 Paper organization

The rest of the paper will be organized as follows. In Section 2, we provide definitions

and notations used in this work. In Section 3, we present a new family of p-Laplacian

on graphs, as nonlocal normalized p-Laplacian. Then, we study existence and uniqueness

of the Dirichlet problem associated with the p-Laplacian equation. Section 4 presents

several applications to some interpolation problems in image and high dimensional data.

Finally, Section 5 concludes the paper.

2 Partial difference Equations on graphs

In this Section, we review some definitions of operators involved in this paper. All these

definitions are borrowed from [20, 40, 19].

2.1 Notations

Let us consider the general situation where any discrete domain can be seen as a weighted

graph. A weighted graph G = (V,E,w) consists in a finite set V of N vertices and in a

finite set E ⊆ V × V of edges. Let (u, v) be the edge that connects vertices u and v. An

undirected graph is weighted if it is associated with a weight function w : V ×V → [0, 1].

The weight function represents a similarity measure between two vertices of the graph.

According to the weight function, the set of edges is defined as : E = {(u, v)|w(u, v) > 0}.
The degree of a vertex u is defined as µ(u) =

∑
v∼u w(u, v) where notation v ∼ u means

that the vertex v is adjacent to u. The neighborhood of a vertex u (i.e., the set of

vertices adjacent to u) is denoted N(u). Let H(V ) be the Hilbert space of real val-

ued functions on the vertices of the graph. Each function f : V → IR of H(V ) assigns

a real value f(u) to each vertex u ∈ V . Similarly, let H(E) be the Hilbert space of

real valued functions defined on the edges of the graph. These two spaces are endowed

with the following inner products: 〈f, g〉H(V ) =
∑
u∈V f(u)g(u) with f, g ∈ H(V ), and

〈F,G〉H(E) =
∑

(u,v)∈E F (u, v)G(u, v) where F,G ∈ H(E).
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2.2 Difference, Divergence on Graphs

Let us fix a weighted graph G = (V,E,w). The difference operator Gw : H(V ) → H(E)

is given for all f ∈ H(V ) and (u, v) ∈ E by: (Gwf)(u, v) =
√
w(u, v)(f(v)− f(u)).

The adjoint operator of the difference operator, denoted by G∗w : H(E) → H(V ),

is defined by 〈Gwf,H〉H(E) = 〈f,G∗wH〉H(V ), with f ∈ H(V ) and H ∈ H(E). Us-

ing the definitions of the inner products in H(V ) and H(E) and the definition of the

difference operator, we obtain easily the expression G∗w at a vertex u : (G∗wH)(u) =∑
v∼u

√
w(u, v)(H(v, u)−H(u, v)).

The divergence operator, defined by divw = −G∗w, measures the net outflow of a func-

tion in H(E) at each vertex of V .

The directional derivative (or edge derivative) of a function f at a vertex u along an

edge e = (u, v), is defined as ∂vf(u) =
√
w(u, v)(f(v)− f(u)).

Two weighted directional difference operators can be defined. The weighted directional

external and internal difference operators are respectively:

(∂+
v f)(u) =

√
w(u, v)(f(v)− f(u))+ and

(∂−v f)(u) =
√
w(u, v)(f(v)− f(u))−,

(2.1)

with (x)+ = max(0, x) and (x)− = −min(0, x).

2.3 Gradient operators and p-Laplacian

The weighted gradient of a function f ∈ H(V) at vertex u is the vector of all edge

derivatives:

(∇wf)(u) = ((∂vf)(u))Tv∼u. (2.2)

Two discrete formulations of weighted morphological gradients on graphs are defined.

The weighted external ∇+
w and internal ∇−w gradient operators are respectively:

(∇+
wf)(u) =

(
(∂+
v f)(u)

)T
v∼u , (2.3)

(∇−wf)(u) =
(
(∂−v f)(u)

)T
v∼u . (2.4)

We define the length of these gradients as follow:

∥∥(∇wf)(u)
∥∥
p

=

[∑
v∈V

√
w(u, v)

p∣∣f(v)− f(u)
∣∣p] 1

p
. (2.5)

∥∥(∇±wf)(u)
∥∥
p

=

[∑
v∈V

√
w(u, v)

p∣∣(f(v)− f(u))±
∣∣p] 1

p
. (2.6)
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Another form of the length of gradients can be defined as:∥∥(∇wf)(u)
∥∥
∞ = max

v∈V

(√
w(u, v)

∣∣f(v)− f(u)
∣∣) (2.7)

∥∥(∇±wf)(u)
∥∥
∞ = max

v∈V

(√
w(u, v)

∣∣f(v)− f(u)
∣∣±) (2.8)

The nonlocal anisotropic p-Laplace operator of f ∈ H(V ) is defined for a vertex u ∈ V
for 1 6 p <∞ as [21]:

∆w,p(f)(u)
def.
= divw(|Gwf |p−2Gwf)(u) =∑

v∼u

√
w(u, v)

p
|f(v)− f(u)|p−2 (f(v)− f(u))

(2.9)

For p = 2, we obtain the 2-Laplacian as follows:

∆w,2(f)(u) =
∑
v∼u

w(u, v)(f(v)− f(u)) (2.10)

For p = 1, we obtain the following 1-Laplacian on graphs:

∆w,1(f)(u)
def.
=
∑
v∼u

√
w(u, v)sign(f(v)− f(u)), (2.11)

where

sign(x)

{
1 if x > 0

−1 otherwise .
(2.12)

The ∞-Laplacian on graph is defined as [18]:

∆w,∞(f)(u)
def.
=

1

2

(
‖∇+

wf(u)‖∞ − ‖∇−wf(u)‖∞
)
. (2.13)

which can be rewritten as:

∆w,∞(f)(u) =
1

2

[
max
v∼u

(√
w(u, v) max

(
(f(v)− f(u)), 0

))
+

min
v∼u

(√
w(u, v) min

(
(f(v)− f(u)), 0

))]
.

(2.14)

Remark : As in the continuous case this operator can be formally derived by the mini-

mization of the following energy on graphs (for p→∞):

Jw,p(f) =
1

2p

∑
u∈V
||
(
∇wf

)
(u)||pp. (2.15)

This is an extension of the well known Oberman numerical approximation [34].

3 Game p-Laplacian on graph

In this section, we propose an extension of the game p-Laplacian on weighted graphs. For

this we first introduce statistical operators, that will be used to define the normalized

p-Laplacian we propose. We make the connection with various p-Laplacian formulations
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in the continuous local and nonlocal setting. Then we study the existence and uniquenes

of the solution of the homogeneous normalized p-Laplacian equation on graphs with

Dirichlet boundary conditions. We also show the connection of our newly defined operator

with the Tug-of-War game.

3.1 Nonlocal statistical operators on weighted graphs

To propose a definition of the normalized p-Laplacian on graphs, we first define the fol-

lowing average operators, which are extensions of the classical average operators (Mean,

Max, Min, Midrange, Median):

NLMean(f)(u) =

∑
v∼u

w(u, v)(f(v))∑
v∼u

w(u, v)
,

NLMax(f)(u) = max
v∼u

(
√
w(u, v)max(f(v)− f(u), 0)) + f(u),

NLMin(f)(u) = max
v∼u

(
√
w(u, v)max(f(u)− f(v), 0)) + f(u),

NLMidrange(f)(u) =
1

2
(NLMin(f)(u) +NLMax(f)(u)),

NLMedian(f)(u) =median((∇wf)(u)) + f(u),

(3.1)

where median is the classical discrete median operator defined as follows :

for xi ∈ R and i = 1...,m

median
16j6m

{xj} =


ym+1

2
if m is odd

ym
2

+ ym
2 +1

2
if m is even

(3.2)

with {y1, ..., ym} a non decreasing arrangement of {x1, ..., xm}.
One can see that by setting w(u, v) = 1, we recover the classical statistical Mean,

Midrange, and Median filters.

Definition. We propose to define the normalized version of the nonlocal 1-Laplacian,

2-Laplacian and ∞-Laplacian as:

∆N
w,2(f)(u) =NLMean(f)(u)− f(u),

∆N
w,1(f)(u) =NLMedian(f)(u)− f(u),

∆N
w,∞(f)(u) =NLMidrange(f)(u)− f(u).

(3.3)

We can remark that these operators are related with partial operartors on graphs,

indeed

∆N
w,2(f)(u) =

1

µ(u)
∆w,2(f)(u)

∆N
w,∞(f)(u) = ∆w,∞(f)(u)

∆N
w,1(f)(u) = median (∇w(f)(u))

(3.4)
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3.2 Game p-Laplacian on graph

With a simple discretization of (1.7) and using the discrete version of game p-Laplacian

with p = 1, p = 2 and p =∞, we propose a nonlocal version of the game p-Laplacian on

graph. This is given by the following equations

∆N
w,p(f)(u) =

{
2
p∆N

w,2(f)(u) + p−2
p ∆N

w,∞(f)(u) for 2 6 p 6∞,
2(p−1)
p ∆N

w,2(f)(u) + 2−p
p ∆N

w,1(f)(u) for 1 6 p 6 2.
(3.5)

Using the definitions (3.3) and (3.5), the game p-Laplacian formulation on weighted

graphs can be rewritten as

∆N
w,p(f)(u) = NLA(f)(u)− f(u), (3.6)

where NLA(f)(u) is a nonlocal average operator as

NLA(f)(u) =


2
pNLMean(f)(u) + p−2

p NLMidrange(f)(u),

for 2 6 p 6∞,
2(p−1)
p NLMean(f)(u) + 2−p

p NLMedian(f)(u),

for 1 6 p 6 2.

(3.7)

3.3 Connection with local and nonlocal PDEs

In this paragraph, we show that the normalized p-Laplacian on graphs we propose is a

discrete version of certain continuous local and nonlocal PDEs.

Let Ω be a bounded, smooth and convex domain in IRN, f : Ω→ IR a given function,

the normalized anisotropic p-Laplacian can be expressed as:

∆N
p f =

1

p
|∇f |2−p

N∑
i=1

∂

∂xi

[∣∣∣ ∂f
∂xi

∣∣∣p−2 ∂f

∂xi

]
. (3.8)

If we discretize this expression with finite centered difference:

Di(f)(x) ≈ ∂

∂xi
f(x) =

f(x+ hi/2)− f(x− hi/2)

hi
, (3.9)

with p = 2, and by using a constant space discretization step hi = h we get the following

operator:

∆N
2 f(x) =

1

2h2

[ N∑
i=1

f(xi + hi) + f(xi − hi)
]
− N

h2
f(x). (3.10)

Given a weighted graph G(V,E,w) that represents a m dimensional grid. Let u be a

vertex associated to a m dimensional vector of spatial coordinates: u = (i1h1, ..., imhm)T

where ij ∈ IN and hj is the grid spacing size with j = 1, ...,m. The neighborhood of
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u can be defined as N(u) = {v : v = u ± hjej}j=1,...,m where ej = (qk)Tk=1,...,m is the

vector such that qk = 1 if j = k and qk = 0 otherwise. In the sequel we call this graph

construction a Euclidean graph.

We consider the case where p = 2 and replacing vertices in the graph by their spatial

coordinates, and setting w1(u, vi) = 1, we get the following formulation :

∆N
w1,2(f)(u) =

∑
v∼u

w1(u, v)f(v)∑
v∼u

w1(u, v)
− f(u)

=
1

2N

[ N∑
i=1

f(v+
i ) + f(v−i )

]
− f(u),

(3.11)

with v±i = u± hiei.
Considering a constant spatial step hi = h ∀i ∈ {1, ..., N} one can see that we recover

the discrete formulation of the normalized p-Laplacian, by the following relation:

∆N
w1,2(f) =

h2

N
∆N

2 f. (3.12)

Now if we consider G = (V,E,w) a complete graph, for p = 2 equation (3.6) can be

rewritten:

∆N
w,2(f)(u) =

∑
v∈V w(u, v)(f(v)− f(u))∑

v∈V w(u, v)
. (3.13)

Now, let us recall the nonlocal continuous p-Laplacian formulation (using p = 2) of a

function u : Ω→ IR, where Ω is a bounded domain of IRN, introduced by [3]:

L2u(x, t) =

∫
Ω

J(x− y)(u(y, t)− u(x, t))dy. (3.14)

One can see that our formulation (equation (3.13)) is the discrete analog of equation

(3.14), normalized by the degree:

∆N
w,2(f)(u) =

L2f(u)∑
v∈V w(u, v)

. (3.15)

In the case where p = 1, the analogy can be done using the recent results of [38]. Let

Ω ⊂ IRN, x ∈ Ω, u : Ω → IR a smooth function, ε =
√

2h, B(x, ε) a ball of radius ε

and center x, and a non-vanishing gradient of u at point x. The author of [38] shows the

following relation:

u(x)− median
y∈∂B(x,ε)

(u(y)) = − h

N − 1
∆N

1 u(x) + o(h). (3.16)

which can be rewritten formally as:

∆N
1 u(x) =

N − 1

h

(
median
y∈∂B(x,ε)

(u(y))− u(x)
)

+ o(h). (3.17)

By using our formulation of ∆N
w,1, we can do the analogy with this formula. Now, let
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us set w2(u, v) as:

w2(u, v) =

{
(N−1)2

h2 , if v ∈ ∂B(u, ε)

0, otherwise
(3.18)

If we replace it into ∆N
w,1, we get formally:

∆N
w2,1(f)(u) =

N − 1

h

(
median
v∼u

(f(v))− f(u)
)

(3.19)

As one can see, this formulation recovers formally the equation (3.17) proposed in [38].

Similarly, in the case where p =∞, we can do the analogy with the Oberman dicretiza-

tion of infinity-Laplace equation [35]: Let f(x) be a smooth function with non-vanishing

gradient at x. The discretization performed in [35] is:

∆∞f(x) = min
|y−x|=ε

(f(y)− f(x))

ε2
+ max
|y−x|=ε

(f(y)− f(x))

ε2
+O(ε2). (3.20)

To recover this formulation, we use the Euclidean graph construction, but setting

w(u, v) as:

w3(u, v) =

{
4
ε4 , if v ∈ ∂Bε(u)

0, otherwise.
(3.21)

If we replace it in ∆N
w,∞, we get:

∆N
w3,∞(f)(u) =

1

2
[max
v∼u

(
√
w3(u, v)(f(v)− f(u))+)−max

v∼u
(
√
w3(u, v)(f(v)− f(u))−)]

=
1

ε2
[max
v∼u

(f(v)− f(u))+ −max
v∼u

(f(v)− f(u))−].

(3.22)

If we set the neighborhood of u as N(u) ∪ {u}, we get

∆N
w3,∞(f)(u) =

1

ε2
[max
v∼u

(f(v)− f(u))−max
v∼u

(f(u)− f(v))]

=
1

ε2
[max
v∼u

(f(v)− f(u)) + min
v∼u

(f(v)− f(u))]

= max
v∼u

f(v)− f(u)

ε2
+ min

v∼u

f(v)− f(u)

ε2
.

(3.23)

Still using p = ∞, but by considering a complete graph, our formulation corresponds

to the recently proposed Hölder infinity-Laplacian equation proposed in [13].

∆w4,∞(f)(x) =
1

2

[
max

y∈Ω,y 6=x
(
f(y)− f(x)

|y − x|s
)

+ min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
)

] (3.24)

with

w4(x, y) =

{
1

|y−x|2s , if y ∈ Ω and y 6= x

0, otherwise.
(3.25)
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This operator is formally derived from the minimization of an energy of the form∫
Ω

∫
Ω

[f(y)− f(x)|p

|x− y|p×s
dxdy (3.26)

as p goes to infinity. In [13], it has been proved that the following equation{
∆N
w4,∞(f)(x) = 0, x ∈ Ω

f(x) = g(x), x ∈ ∂Ω
(3.27)

(and with some conditions on g), has a unique solution.

3.4 Study of the existence and uniqueness of the game p-Laplacian equation

Now, we will study the Dirichlet problem associated to this nonlocal normalized p-

Laplacian equation (3.5).

Theorem 1 Given a connected graph G = (V,E,w), a set A ⊂ V and a function g :

∂A→ IR where ∂A is the boundary of A. Then, there exists a unique function f ∈ H(V )

such that f verifies the following equation:{
∆N
w,p(f)(u) = 0 u ∈ A

f(u) = g(u) u ∈ ∂A
(3.28)

Proof of Theorem 1

Using the NLA operator defined in equation (3.7), we can rewrite (3.28) as:{
NLA(f)(u)− f(u) = 0 u ∈ A
f(u) = g(u) u ∈ ∂A

(3.29)

First, let us prove the uniqueness of the solution by using the comparison principle.

Given two functions f and h, we will prove that if f = NLA(f) and h = NLA(h) with

f 6 h on ∂A, then f 6 h on the whole domain V . By the argument of contradiction, we

assume that there exists M such that

M = sup
V

(f − h) > 0.

Let B = {u ∈ A : f(u) − h(u) = M}. By construction we have B 6= ∅ and B ∩ ∂A = ∅.
We claim that there exists uλ ∈ B and vλ ∈ N(uλ), such that vλ /∈ B. Otherwise, if for

each u ∈ A and for each v ∈ N(u) we have v /∈ B, then it implies that B ∩ ∂A 6= ∅,
since the graph is connected : there is a contradiction. Then, from the definition of M ,

we have

f(uλ)− h(uλ) > f(u)− h(u) ∀u ∈ N(uλ)

h(u)− h(uλ) > f(u)− f(uλ) ∀u ∈ N(uλ).

In particular we can write,

h(vλ)− h(uλ) > f(vλ)− f(uλ).

From these inequalities, and using definitions of NLMin and NLMax, we have
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max
u∼uλ

(√
w(uλ, u) max

(
h(u)− h(uλ), 0

))
>

max
u∼uλ

(√
w(uλ, u) max

(
f(u)− f(uλ), 0

))

NLMax
(
h
)
(uλ)− h(uλ) > NLMax

(
f
)
(uλ)− f(uλ) (3.30)

similarly

max
u∼uλ

(√
w(uλ, u) min

(
h(u)− h(uλ), 0

))
>

max
u∼uλ

(√
w(uλ, u) min

(
f(u)− f(uλ), 0

))

h(uλ)−NLMin
(
h
)
(uλ) > f(uλ)−NLMin

(
f
)
(uλ) (3.31)

By the same reasoning, using the NLMean operator, we have:∑
u∼uλ

w(uλ, u)h(u)∑
u∼uλ

w(uλ, u)
− h(uλ) >

∑
u∼uλ

w(uλ, u)f(u)∑
u∼uλ

w(uλ, u)
− f(uλ)

NLMean
(
h
)
(uλ)− h(uλ) > NLMean

(
f
)
(uλ)− f(uλ) (3.32)

This previous inequality is strict because we know there is v ∈ N(uλ) such that h(v) −
h(uλ) > f(v)− f(uλ).

Finally, using the NLMedian operator, we have:

√
w(uλ, u)(h(u)− h(uλ) >

√
w(uλ, u)(f(u)− f(uλ)

median(
√
w(uλ, u)(h(u)− h(uλ)) > median(

√
w(uλ, u)(f(u)− f(uλ))

NLMedian(h)(uλ)− h(uλ) > NLMedian(f)(uλ)− f(uλ) (3.33)

From relations (3.30), (3.31), (3.32), and (3.33), we can write the following inequality

for 2 6 p 6∞

p− 2

p
NLMidrange

(
h
)
(uλ) +

2

p
NLMean

(
h
)
(uλ)− h(uλ).

>

p− 2

p
NLMidrange

(
h
)
(uλ) +

2

p
NLMean

(
f
)
(uλ)− f(uλ).
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and for 1 6 p 6 2

2− p
p

NLMedian
(
h
)
(uλ) +

2(p− 1)

p
NLMean

(
h
)
(uλ)− h(uλ).

>

2− p
p

NLMedian
(
f
)
(uλ) +

2(p− 1)

p
NLMean

(
f
)
(uλ)− f(uλ).

So that we can write for 1 6 p 6∞

NLA
(
h
)
(uλ)− h(uλ) > NLA

(
f
)
(uλ)− f(uλ)

h(uλ)− h(uλ) > f(uλ)− f(uλ)

0 > 0

This shows a contradiction and concludes the proof.

Now, let us prove existence. First, we recall the Brouwer fixed point theorem : A

continuous function from a convex, compact subset of a Euclidean space to itself has a

fixed point.

Then, we identifyH(V ) as IRN and consider the set K = {f ∈ H(V ) | f(u) = g(u) ∀u ∈
∂A, and m 6 f(u) 6 M ∀u ∈ A}, where m = min

∂A

(
g(u)

)
and M = max

∂A

(
g(u)

)
. By

definition, K is a convex and compact subset of IRN.

It is easy to show that the map f → NLA(f) is continuous and take from K to K.

So, by the Brouwer fixed point theorem, the map NLA has a fixed point that is solution

of NLA(f) = f . This completes the proof.

3.5 Connection with Tug-of-War games

Many local PDEs (p-Laplacian (for p > 2), infinity-Laplacian) are related to a stochastic

game called Tug-of-War game. We show that our newly introduced partial difference

operator also recovers value functions of this game. In particular Tug-of-War game and

Tug-of-War game with noise [36, 33]

Let us briefly review the notion of Tug-of-War game introduced by [36]. Let Ω ⊂ IRN

be a Euclidean space, and g : Ω → IR a function. Fix a number ε > 0. The dynamics

of the game are as follows. A token is placed at an initial position x0 ∈ Ω. At the kth

stage of the game, Player I and Player II select points xIk and xIIk , respectively, each

belonging to a specified set Bε(xk−1) ⊆ Ω (where Bε(xk−1) is the ε-ball centered in

xk−1). The game token is then moved to xk, where xk is chosen so that xk = xIk with

probability P = 1
2 . In other words, a fair coin is tossed to determine where the token

is placed. After the kth stage of the game, if xk ∈ Ω then the game continue to stage

k + 1. Otherwise, if xk ∈ ∂Ω, the game ends and Player II pays Player I the amount

g(xk). Player I attempts to maximize the payoff while Player II attempts to minimize it.

According to the dynamics programming principle (see [36, 33]), the value functions for
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Player I and Player II for standard ε-turn Tug-of-War satisfy the relation

f(x) =
1

2

[
max

y∈Bε(x)
f(y) + min

y∈Bε(x)
f(y)

]
on Ω, (3.34)

with f(x) = g(x) on ∂Ω.

Given a Euclidean graphG(V,E,w), with V = Ω ⊂ IRN, E = {(x, y) ∈ V×V | w5(x, y) >

0} and

w5(x, y) =

{
1, if |y − x| 6 ε

0, otherwise,
(3.35)

and using the following relations easily obtained from definitions of the L∞ norms of

morphological gradients (2.7)

max
y∈Bε(x)

f(y) = ‖∇+
w5
f(x)‖∞ + f(x)

min
y∈Bε(x)

f(y) = f(x)− ‖∇−w5
f(x)‖∞.

(3.36)

One can see that by replacing max and min in equation (3.34) by their formulation of

(3.36), we get:

f(x) =
1

2

[
‖∇+

w5
f(x)‖∞(x)− ‖∇−w5

f(x)‖∞
]

+ f(x)

1

2

[
‖∇+

w5
f(x)‖∞(x)− ‖∇−w5

f(x)‖∞
]

= 0,

(3.37)

which coincides with our formulation (3.5) of the infinity-Laplacian on graphs:

∆N
w5,∞(f)(x) = 0. (3.38)

For a general Euclidean weighted graph, and with p = ∞, our formulation is con-

nected to the following nonlocal Tug-of-War game. This is the same game as previously

described, except that the ε-ball is replaced by a neighborhood N(xk−1) ⊂ Ω defined as

N(xk−1) = {x ∈ Ω | w(x, xk−1) > 0} (3.39)

In this version of the game, the game token is then moved to xk, where xk is chosen

randomly so that xk = xIk with a probability

P =

√
w(xk−1, xIk)√

w(xk−1, xIk) +
√
w(xk−1, xIIk )

(3.40)

and that xk = xIIk with a probability 1 − P . According to the dynamic programming

principle, the value functions for Player I and Player II for this game satisfies the relation

max
y∈N(x)

√
w(x, y)

(
f(y)− f(x)

)
+

min
y∈N(x)

√
w(x, y)

(
f(y)− f(x)

)
= 0,

(3.41)

which is simply

∆N
w,∞(f)(x) = 0. (3.42)
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Tug-of-War game with noise: If the game is modified as follows: at point x in

Ω, player I and player II play ε-step Tug-of-War game with probability α, and with

probability β such that α + β = 1, a random point in ball of radius ε centered at x is

chosen. The value functions of the game satisfy the Dynamic Programming Principle

f(x) =
α

2

[
max

y∈Bε(x)
f(y) + min

y∈Bε(x)
f(y)

]
+

β

|Bε(x)|

∫
Bε(x)

f(y)dy (3.43)

with f(x) = g(x) for x in Ω and α and β ∈ IR+ such that α + β = 1. A detailed proof

for existence and uniqueness of these types of functions was shown in [33].

By using the same graph construction as for the local Tug-of-War game and the same

weighting function w5, we can rewrite equation (3.43) in the context of PdEs on graphs:

we have already shown that the first right hand term of (3.43) (1/2
[
maxy∈Bε(x) f(y) + miny∈Bε(x) f(y)

]
)

can be rewritten as equation (3.37). For the second term, we can rewrite it as

1

|N(u)|

∫
v∈N(u)

f(v)dv = ∆N
w5,2(f)(u) + f(u), (3.44)

then equation (3.43) can be rewritten as:

f(x) = α(∆N
w5,∞(f)(u) + f(u)) + β(∆N

w5,2(f)(u) + f(u)), (3.45)

which is equivalent to

α∆N
w5,∞(f)(u) + β∆N

w5,2(f)(u) = 0. (3.46)

One can see here that we recover our formulation on graphs of the normalized p-

Laplacian for 2 6 p 6∞:

∆N
w5,p(f)(u) = 0. (3.47)

4 Experiments

In this Section, we illustrate the behavior of the normalized p-Laplacian presented in

this paper, through some inverse problems as functions interpolation on graphs. The

experiments provided are not here to solve a particular application but to illustrate the

potentialities of our proposal.

Many tasks in image processing, computer vision and machine learning can be for-

mulated as interpolation problems. Image and video colorization, inpainting and semi-

supervised segmentation or clustering are examples of these interpolation problems. In-

terpolating data consists in constructing new values for missing data in coherence with a

set of known data. In this paper, we propose to use the nonlocal normalized p-Laplacian

as a unified framework for both the tasks of semi-supervised segmentation or clustering

and image inpainting. For this, we solve the following Dirichlet problem:{
∆N
w,p

(
f
)
(u) = 0 u ∈ A

f(u) = g(u) u ∈ V −A = ∂A
(4.1)

where A ⊂ V is the subset of vertices associated to the missing information. The initial
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value function g is application dependent and will be defined for each application in the

sequel.

To solve (4.1) we make use of the following associated evolution equation problem:
∂

∂t
f(u, t) = ∆N

w,p

(
f
)
(u, t), u ∈ A,

f(u, t) = g(u), u ∈ ∂A,
f(u, t = 0) = f0(u), u ∈ A,

(4.2)

for which f0 is an initial function that is also application-dependent.

To solve (4.2) iteratively we use an explicit forward Euler time discretization:

∂f

∂t
(u, t) =

fn+1(u)− fn(u)

∆t
(4.3)

with fn(u) = f(u, n∆t).

Hence, we can try to solve (4.2) by the following iteration scheme:
fn+1(u) = fn(u) + ∆t∆N

w,p

(
fn
)
(u), u ∈ A,

fn+1(u) = g(u), u ∈ ∂A,
f0(u) = f0(u), u ∈ A.

(4.4)

Using ∆N
w,p = NLA(f)− f and setting ∆t = 1, we get the following nonlocal average

filter, which is a convex combination of a dilation, an erosion, and a nonlocal mean

processes:
fn+1(u) =


2

p
NLMean(fn)(u) +

p− 2

p
NLMidrange(fn)(u), for 2 6 p 6∞

2(p− 1)

p
NLMean(fn)(u) +

2− p
p

NLMedian(fn)(u) for 1 6 p 6 2

fn+1(u) = g(u), u ∈ ∂A,
f0(u) = f0(u), u ∈ A.

(4.5)

Proposition : if the iterative filtering (4.5) converges to a function f∗, then f∗ satisfy

∆N
w,p(f

∗)(u) = 0 for u ∈ V .

Proof : let f∗ be the limit process. Since functions NLMean, NLMidrange and

NLMedian are continuous, then we have :

f∗(u) =


2

p
NLMean(f∗)(u) +

p− 2

p
NLMidrange(f∗)(u), for 2 6 p 6∞

2(p− 1)

p
NLMean(f∗)(u) +

2− p
p

NLMedian(f∗)(u) for 1 6 p 6 2

(4.6)

It easy to show that (4.6) is equivalent to :

∆N
w,p(f

∗)(u) = 0 (4.7)
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4.1 Weighted graph construction

There exists several popular methods to transform discrete data {x1, ...xn} into a weighted

graph structure. Considering a set of vertices V such that data are embedded by functions

of H(V ), the construction of such graph consists in modeling the neighborhood relation-

ships between the data through the definition of a set of edges E and using a pairwise

distance measure µ : V × V → IR+. In the particular case of images, the ones based on

geometric neighborhoods are particularly well-adapted to represent the geometry of the

space, as well as the geometry of the function defined on that space. One can quotes:

• Grid graphs which are most natural structures to describe an image with a graph.

Each pixel is connected by an edge to its adjacent pixels. Classical grid graphs are

4-adjacency grid graphs and 8-adjacency grid graphs. Larger adjacency can be used to

obtain nonlocal graphs.

• Region adjacency graphs (RAG) which provide very useful and common ways of de-

scribing the structure of a picture: vertices represent regions and edges represent region

adjacency relationship.

• k-neighborhood graphs (k-NNG) where each vertex vi is connected with its k-nearest

neighbors according to µ. Such construction implies to build a directed graph, as the

neighborhood relationship is not symmetric. Nevertheless, an undirected graph can be

obtained while adding an edge between two vertices u and v if u is among the k-nearest

neighbor of v or if v is among the k-nearest neighbor of u

• k-Extended RAG (k-ERAG) which are RAGs extended by a k-NNG. Each vertex is

connected to adjacent regions vertices and to it’s k most similar vertices of V .

The similarity between two vertices is computed according to a measure of similarity

s : E → IR+, which satisfies:

w(u, v) =

{
s(u, v) if (u, v) ∈ E
0 otherwise

Usual similarity functions are as follow:

s0(u, v) =1,

s1(u, v) =exp
(
−µ
(
f0(u), f0(v)

)
/σ2
)

with σ > 0

where σ depends on the variation of the function µ and control the similarity scale.

Several choices can be considered for the expression of the feature vectors, depending

on the nature of the features to be used for the graph processing. In the context of image

processing, one can quote the simplest gray scale or color feature vector Fu, or the patch

feature vector F τu =
⋃
v∈Wτ (u) Fv (i.e, the set of values Fv where v is in a square window

Wτ (u) of size (2τ + 1) × (2τ + 1) centered at a vertex pixel u), in order to incorporate

nonlocal features.
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4.2 Semi supervised Segmentation and Classification

In the case of image semi supervised segmentation, graph-based approaches have become

very popular in recent years. Many graph-based algorithms for image segmentation have

been proposed. Interested reader should refer to recent works [15, 16] and references

therein.

In this paper, we propose to consider this problem as an interpolation problem, where

the function to interpolate is the label function. Using equation (4.1), and considering

two classes A and B, the initial value label function g is defined as follows
g(u) = −1 if u ∈ A
g(u) = 1 if u ∈ B
g(u) = 0 otherwise

(4.8)

At convergence, the class membership can be easily computed by a simple threshold on

the sign of f

Remark 1 In the case of more than two classes, multi-classes segmentation can be

performed by several segmentation of one class versus the others.

4.2.1 Natural image segmentation using non-local graph

In this paragraph, we show the benefits of nonlocal schemes compared to local ones for

semi-supervised image segmentation, especially for images that contain fine and repetitive

structures.

Figure 1 presents several segmentation results of a natural tiger image, with two dif-

ferent (local and nonlocal) graph constructions and different values for the parameter p.

The local graph is built as a usual 4-adjacency grid graph where each pixel is character-

ized by it’s color feature vector. The nonlocal one is built using a knn graph in a 51× 51

neighborhood window and each pixel is characterized by a 5 × 5 patch of color feature

vectors.

4.2.2 Real data clustering

In this paragraph, we present experiments on data semi-supervised classification.

We have considered label diffusion using the game p-Laplacian on three standard

state-of-the-art databases: MNIST [32], OPTDIGITS [2], and PENDIGITS [1]. These

databases are composed of hand written digits. For these databases, we have merged

both the training and the test set (as performed in [10]), resulting in datasets of 70000,

5620, and 10992 instances, for MNIST, OPTDIGITS, and PENDIGITS, respectively. For

the OPTDIGITS and PENDIGITS databases, we have used a preprocessed version of

the data, giving constant size feature vectors, and giving invariance to small distortions

(see [2] and [1] for more details on the preprocessing routines). For MNIST, we use the

data from the orginal database, where the digits are stored as small images. As the au-
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User seeds

Local, w = s1, Nonlocal, w = s1

p
=

1
.0

5
p

=
2

p
=

∞

Figure 1. Semi-supervised natural image segmentation with ∆N
w,p. First column presents

results with a local 4-adjacency grid graph where each pixel is characterized by it’s

color feature vector. Second columns presents nonlocal results obtained with a larger

neighborhood (each pixel u is linked with any pixel in a 51× 51 window centered on u)

and pixels are characterized by patches of size 5× 5. In both cases, results are provided

for p = 1.05, p = 2 and p =∞. See text for more details.

thors of [10], we have constructed a k-nearest neighbor graph on the merged datasets,

with k = 10. For the MNIST dataset, we constructed the graph using the two-sided

tangent distance [31], giving invariance to small affine transforms, and for the two others

we used the Euclidean distance between each data points. To compute weights between

each vertex, we have used the well known Gaussian Kernel similarity: w(u, v) = s1(u, v).

Since the parameter σ (in s1) is a strong bottleneck of graph-based methods, we con-

sider strategies for computing automatically its value. We tried two strategies: using a

global scaling parameter σ, and using a σi local to each vertex, as in [42], to have a
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Seeds Result

Figure 2. Semi supervised data clustering illustration. Left figure (Seeds) shows a graph

built on a database of hand written numbers (0’s, 1’s, and 6’s) with some nodes initially

labelized (in green, blue, and purple) in each class. The figure on the right shows the

result of the label diffusion on the graph. See text for more details.

local scaling weight function. In this particular case, the similarity function becomes:

w(u, v) = exp −µ(u,v)2

σuσv
, with σu the local scaling parameter at vertex u. We computed

each σu as the distance to the Mth closest vertex to u.
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Figure 3. Semi supervised classification results for the MNIST database. X-axis is the

amount of labelized vertices and Y-axis is the classification rate. Best results were

achieved using a local scaling parameter (σ) and p close to one. See text for more details.

To estimate a global σ parameter, we used the method described in [30]. These au-

thors proposed a robust method to estimate a global and a local σ parameter. In
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this work, we have used the global estimation, which is: σ̂ = 1.4826median(||ES | −
median|ES ||), where ES is the set of local residuals in the graph, computed as: Eu =

(
∑
v∼u f(u)− f(v))/

√
|v ∼ u|2 + |v ∼ u|, for a vertex u. For further details and justifi-

cations, see [30].

As a test protocol, we make ten runs for each algorithm, and we use a percentage of

already labelized vertices, settled randomly each time. A typical labeling result is shown

in Figure 2.

Classification results are shown in Figures 3, 4, and 5. We only present here results

that have provided the best average classification rates.
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Figure 4. Semi supervised classification results. Like the MNIST database, best results

were achieved using a local scaling parameter (σ) and p close to one. See text for more

details.

To evaluate our method, we compare ourselves with the most recent and efficient

method called Multiclass Total Variation clustering (MTV) [10]. As it can be seen from

the results, for MNIST (Figure 3) and PENDIGITS (Figure 5) datasets, our method

outperforms the state-of-the-art while for OPTDIGITS (Figure 4) it compares well with.

To show the behavior of our operator, we plotted classification rates varying the pa-

rameter p in Figure 6. As one can see the closer we get from p = 1 the better the

rates.

The number of iteration to reach the convergence vary with the database (for Pendigits

: 500 iterations, Optigits : 500 iterations, Mnist : 100 iterations). All processing have been

implemented in C++ and have been run on a current workstation with a GNU/Linux

operating system.
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Figure 5. Semi supervised classification results for the PENDIGITS database. Like the

MNIST and OPTDIGIT databases, best results were achieved using a local scaling pa-

rameter (σ) and p close to one. See text for more details.
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Figure 6. Semi supervised classification rates for 1 < p 6 2 on the PENDIGITS dataset.

See text for more details.

4.3 Nonlocal image inpainting

Digital inpainting is a fundamental problem in image processing and has many appli-

cations in different fields. It can be simply resumed as reconstructing a damaged or

incomplete image by filling the missing informations in incomplete regions.

In recent years, many methods have been developed for interpolating the geometry,

the texture or both geometry and texture. Among the methods of interpolation that
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Figure 7. Semi supervised classification rates for 1 < p 6 1.1 on the PENDIGITS dataset.

See text for more details.

Seeds p = 2 p = ∞

Figure 8. Texture image Inpainting. See text for details.

have been proposed, a number of methods are based on PDEs or variational methods,

see [5, 39] and references therein.

Since the work of [11] on nonlocal filtering, many nonlocal methods for image in-

painting have gained considerable attention these recent years. This is in part due to

their superior performance in textured images, known weakness of purely local meth-

ods. Recent works tend to unify the local and nonlocal interpolation approaches [26]. A

variational framework for nonlocal image inpainting has been presented in [5]. In [25], a

discrete nonlocal regularization framework for image and manifold processing has been

proposed, and has been used to present a unifying approach of local geometric methods

and nonlocal exemplar-based ones for video inpainting.

Considering equation (4.1), inpainting problem can be summarized as follows: V0 is the

set of pixels with missing information. g : V → H(V ) represents the known information.

f : V → H(V ) represents the image to reconstruct.



24 A. Elmoataz, X. Desquesnes, M. Toutain

Original p = 2, local graph p = ∞, local

Seeds p = 2, nonlocal graph p = ∞, nonlocal graph

Figure 9. Image Inpainting using local and nonlocal graph construction. See text for

details.

Seeds p = 1.1

p = 2 p = ∞

Figure 10. Natural color image inpainting using nonlocal graph construction. See text

for details.

This is illustrated in Figures 8, 9, and 10. The first one (Figure 8) illustrates the behavior

of the algorithm on a texture image, using a nonlocal graph construction with a 31× 31

neighborhood window and 15× 15 patches, with data dependent weight function. Figure

9 illustrate the algorithm, using local (8-adjacency graph) and nonlocal (knn graph in a

31× 31 neighborhood window and 15× 15 patches) graph construction. Figure 10 shows
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the results on a natural color image, using nonlocal graph construction, and varying the

p parameter of ∆N
w,p.

5 Conclusion

In this paper, we have introduced a new class of normalized p-Laplacian operators as

a discrete adaptation of the game-theoretic p-Laplacian on weighted graphs. This class

is based on new partial difference operator which interpolate between normalized 2-

Laplacian, 1-Laplacian, and ∞-Laplacian on graphs. This operator is also connected

to nonlocal average operators such as nonlocal mean, nonlocal median, and nonlocal

midrange. It generalizes the normalized p-Laplacian on graphs for 1 6 p 6 ∞. We have

shown the connections with local and nonlocal PDEs of p-Laplacian types and Tug-of-

War games. We have proved existence and uniqueness of the Dirichlet problem involving

operators of this new class. Finally, we have illustrated the interest and behavior of such

operators in some inverse problems in image processing and machine learning.
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