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Abstract In this paper, we introduce a new general class
of partial difference operators on graphs, which interpo-
late between the nonlocal ∞-Laplacian, the Laplacian, and
a family of discrete gradient operators. In this context, we
investigate an associated Dirichlet problem for this general
class of operators and prove the existence and uniqueness of
respective solutions.We show that a certain partial difference
equation based on this class of operators recovers many vari-
ants of a stochastic game known as ‘Tug-of-War’ and extends
them to a nonlocal setting. Furthermore, we discuss a con-
nection with certain nonlocal partial differential equations.
Finally, we propose to use this class of operators as general
framework to solve many interpolation problems in a unified
manner as arising, e.g., in image and point cloud processing.
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1 Introduction

Partial differential equations (PDEs) involving the p-Laplace
and ∞-Laplace operators still generate a lot of interest both
in the setting of Euclidean domains and on discrete graphs.
These operators in their different forms, i.e., continuous,
discrete, local, and nonlocal, are at the interface of many
scientific fields as they are used to model many interesting
phenomena, e.g., in mathematics, physics, engineering, biol-
ogy, and economy. Some closely related applications can be
found in image processing, computer vision, machine learn-
ing, and game theory, see, e.g., [3,9,15,26,28,38,51] and
references therein.

The continuous p-Laplacian plays an important role in
geometry and in the field of PDEs. For a comprehensive
introduction and survey on these topics, we refer to [23,47]
and references therein. Many inverse problems in image
processing such as denoising, deconvolution, segmentation,
inpainting are formulated as regularized minimization prob-
lems and are often solved based on PDEs and variational
models which are related to the p-Laplacian. For p = 2,
the well-known Tikhonov regularization is linked to Lapla-
cian diffusion, while the case p = 1 corresponds to the total
variation regularization.

The game p-Laplacian is a variant of the p-Laplacian
which was recently introduced in connection with a stochas-
tic game called Tug-of-War with noise [60]. For p = 1,
this operator is related to the mean curvature flow, which
has numerous applications ranging from free boundary prob-
lems in material sciences and computational fluid dynamics
to filtering, inpainting, and segmentation in image process-
ing and computer vision [56,64]. For 1 < p < ∞, the
game p-Laplacian can be expressed as a convex combina-
tion of the 1-Laplacian and the ∞-Laplacian [38]. For the
special case of p = ∞, this operator has also been used in
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several applications in image processing, computer vision,
surface reconstruction, and image inpainting [25,32]. Indeed,
game theoretic methods have recently emerged as a novel
approach to study nonlinear elliptic PDEs. In particular, Tug-
of-War games related to PDEs based on the p-Laplace and
the ∞-Laplace equation have emerged, e.g., see [50,59] and
references therein. One way to establish the link between
these PDEs and the Tug-of-War game is to show that there
exists a value function of the respective game which satisfies
a dynamic programming principle (DPP). This DPP is gener-
ally a statistical functional involving the min, max, and mean
operators. It can be interpreted as a local approximation of
the PDE in question.

Finally, we would also like to mention the nonlocal p-
Laplacian and the fractional Laplacian. The interest for
these operators has constantly increased over the last few
years. They arise in a number of applications such as con-
tinuum mechanics, phase transition phenomena, population
dynamics, image processing, and game theory (see [3,4,34]
and references therein). In image processing, regularization
based on the nonlocal p-Laplacian [33] is related to nonlocal
total variation or the nonlocalmean proposed byBuades et al.
[14]. In general, nonlocal regularizationmethods have shown
their superiority over classicalmodels since local smoothness
is not mandatory. In particular, they are well known for their
ability to preserve both geometric and repetitive structures in
images [5,31].

On the other hand, discrete Laplacian operators have been
extensively used in image processing and in machine learn-
ing for clustering or dimension reduction [18,71]. The graph
p-Laplacian, which is a generalization of the conventional
discrete Laplacian, has started to attract attention in math-
ematics, machine learning, image and manifold processing
community. For p �= 2, the graph p-Laplacian has been
studied in relation to the p-cheeger cut [36] and data cluster-
ing and for semi-supervised classification [74]. Meanwhile,
partial difference equations (PdEs) on graphs involving the
p-Laplacian have been investigated as a subject of its own
interest, dealing with existence and qualitative behavior of
respective solutions, see, e.g., [43,55,57].

1.1 Our Previous Works

In previous works, we have introduced a framework for par-
tial difference equations which enables us to translate and
adapt continuous PDEs and variationalmethods to the setting
of graphs [11,27,68]. Conceptually, the idea of introduc-
ing PdEs is to mimic continuous PDEs on graph structures
by consistently adapting important mathematical concepts,
e.g., integration and differentiation. By doing so, one is able
to directly translate most of the established techniques for
PDEs and in particular for the p-Laplace operator to graphs.
Moreover, in case of evolution PdEs this framework provides

models in which spatial integration and temporal evolution
can be handled separately. Indeed, in this case there is no
need for a spatial discretization and one gains a unification
of local and nonlocal models [28]. In our previous works,
we have also introduced a family of p-Laplacian operators
(isotropic and anisotropic) on graphs in divergence form [11]
within this framework.

In [11,27], we have introduced nonlocal regularization on
weighted graphs of arbitrary topology. In particular, it was
shown that these regularization methods lead to a family of
discrete and semi-discrete diffusion processes based on dis-
crete p-Laplacian operators. These processes, parametrized
both by the graph structure (topology and geometry) and by
the degree of smoothness p, allow to perform several fil-
tering tasks such as denoising, simplification, or clustering.
Moreover, local and nonlocal image regularizations are for-
malized within the same framework, which corresponds to
the transcription of local or nonlocal regularization proposed
in [34]. Based on the same ideas, we have proposed PdEs for
morphological processes on graphs to transcribe continuous
morphological PDEs such as dilation and erosion [68]. The
study of well-posedness of the Eikonal equation on graphs
has recently been reported in [22]. Furthermore, we have pro-
posed the adaptation of both nonlocal ∞-Laplacian [25] and
game p-Laplacian for 2 ≤ p ≤ ∞ on graphs [26].

In [69], we proposed to adapt and solve a general equa-
tion, of type ∞-Poisson and Hamilton–Jacobi, on weighted
graphs. This equation was used to approximate generalized
distance on weighted graphs, but also to perform image
segmentation and data classification. We showed the con-
nections between this particular equation and Tug-of-War
games, related to ∞-Laplacian with gradient terms.

The operator we proposed in this last article corresponds
to a particular case of the one we proposed later in [29],
which we present in the next section. In this article, we have
proposed a family of p-Laplacian and ∞-Laplacian type
operator, and we studied both the parabolic and elliptic equa-
tions, proving existence and uniqueness of the solution to the
associated Dirichlet problem. The case p = ∞ corresponds
to the operator in [69]. We also showed the connections with
Tug-of-War games and the elliptic equation, related to the
∞-Laplacian.

1.2 Main Contributions

This paper follows our previous work.
Let G be a weighted graph, V the set of vertices of G,

and f : V → R a function of the Hilbert space H(V ) of
real-valued functions defined on the graph vertices. In [29],
we proposed a general p-Laplacian with gradient terms on
weighted graphs Lw,p : H(V ) → R, defined as:
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{
α(u)‖∇+

w ( f )(u)‖p−1
p−1 − β(u)‖∇−

w ( f )(u)‖p−1
p−1, 2 ≤ p < ∞,

α(u)‖∇+
w ( f )(u)‖∞ − β(u)‖∇−

w ( f )(u)‖∞, p = ∞,

(1)

where α, β : V → [0, 1], α(u)+β(u) = 1, and ∇+
w and ∇−

w

are theweighted upwind gradients, defined later in this paper.
We showed in [29] that this operator enables the recovery of
the p-Laplacian, the ∞-Laplacian (for p = ∞), and mor-
phological operators on graphs. We also showed that this
operator corresponds to the value functions of Tug-of-War
games in the discrete setting of weighted graphs. In [69], we
used a particular case of (1) with p = ∞ to propose a hybrid
∞-Poisson and Hamilton–Jacobi equation in the setting of
graphs:

{
Lw,∞( f )(u) = h(u), u ∈ A,

f (u) = g(u), u ∈ ∂A,
(2)

withA a subset of V and ∂A its boundaries (defined later in
the article).

We also showed in [69] the relation between this equation
and Tug-of-War games.

In this paper, we propose a new formulation of operator
of p-Laplacian type, and we study a novel general class of
PdEs, using the proposed operator onweighted graphs. These
equations are based on finite difference operators which
interpolate between two discrete upwind gradients and the
p-Laplacian operator on graphs. This operator is defined as
follows:

�α,β,γ f = α||∇+
w f ||∞ − β||∇−

w f ||∞ + γ�w,2 f, (3)

where α, β, γ ∈ R
+ and α + β + γ = 1. Depending on the

values of α, β, and γ , we show that we are able to recover the
discrete analogues of many local and nonlocal PDEs involv-
ing the conventional Laplacian, the ∞-Laplacian, and the
p-Laplacian with and without additional gradient terms. The
advantage of the involved family of operators is its adaptiv-
ity with respect to potential applications, i.e., to handle many
local and nonlocal interpolation problems in image and data
processing within the same unified framework, e.g., inpaint-
ing, colorization, and semi-supervised clustering.

The main contributions in this paper are the following:

– We propose a novel family of operators on graphs, which
unifies our previous works and allows to translate many
interesting models continuous local as well as nonlocal
PDEs to the graph framework.

– We investigate an associatedDirichlet problem on graphs
and prove the existence and uniqueness of respective
solutions.

– We establish a connection to many local Tug-of-War
games:

– Tug-of-War related to ∞-Laplacian equation,
– Tug-of-War related to ∞-Laplacian equation with
gradient terms,

– Tug-of-War with noise related to game p-Laplacian
equation,

– Tug-of-War with noise related to game p-Laplacian
equation with gradient terms.

– Then we show that the elliptic equation involving our
class of operator can be interpreted as a new nonlocal
formulation of these games.

Furthermore, in order to solve the associated Dirichlet
problem in the setting of discrete graphs we propose an algo-
rithm which can be used to unify interpolation tasks on both
conventional images and point cloud data. As we will show
on real-world data, this algorithm might be useful in partic-
ular for:

– inpainting of images and 3D point clouds.
– colorization of 3D point clouds.
– semi-supervised classification of databases (represented
as high-dimensional point clouds).

1.3 Paper Organization

The rest of this work is organized as follows: In Sect. 2,
we provide basic definitions and notations, which are used
throughout this work. Furthermore, we recall our previous
works on PdEs on graphs and the p-Laplacian on graphs. In
Sect. 3, we derive a novel partial difference operator which
interpolates between the graph p-Laplacian, the graph ∞-
Laplacian, and discrete gradient operators. Then, we study
an associated Dirichlet problem and prove the existence
and uniqueness of respective solutions. Furthermore, we
present and discuss the connections between nonlocal con-
tinuous PDEs and Tug-of-War games. Section 4 presents
several applications and interpolationproblemson real-world
images and point clouds. Finally, a short discussion in Sect. 5
concludes this paper.

2 Partial Difference Operators on Graphs

In this section,we introduce the basic notations used through-
out this paper. Additionally, we recall various definitions of
difference operators onweighted graphs frompreviousworks
in order to define in this context derivatives, the p-Laplace
operator, and somemorphological operators on graphs.More
details on these operators can be found in [11,27,68].
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2.1 Notations

Let us consider the general situation in which any discrete
domain can be viewed as aweighted graph.Aweighted graph
G = (V, E, w) consists of a finite set V of m ∈ N vertices
and of a finite set E ⊆ V × V of edges. Let (u, v) ∈ E be
an edge that connects two vertices u ∈ V and v ∈ V . An
graph is weighted if it is associated with a weight function
w : V × V → [0, 1]. A weighted graph is denoted as undi-
rected if this weight function satisfies w(u, v) = w(v, u)

for all (u, v) ∈ V × V . Note that the weight function often
represents a similarity measure between two vertices of the
graph based on an appropriate feature. If we use the nota-
tion u ∼ v to denote two adjacent vertices, we can give an
alternative characterization of the edge set with respect to
the weight function w by E = {(u, v) | w(u, v) > 0}. The
degree of a vertex u is defined as δw(u) = ∑

v∼u w(u, v),
while the neighborhood of a vertex u (i.e., the set of vertices
adjacent to u) is denoted as N (u). In this paper, we consider
only weighted graphs which are connected, undirected, and
without self-loops or multiple edges.

Let H(V ) be the Hilbert space of real-valued functions
defined on the graph vertices. Each function f : V → R

of H(V ) assigns a real value f (u) to each vertex u ∈ V .
Similarly, letH(E) be the Hilbert space of real-valued func-
tions defined on the edges of the graph. It gets clear that the
two spaces can be endowed with the following inner prod-
ucts: 〈 f, g〉H(V ) = ∑

u∈V f (u)g(u) for f, g ∈ H(V ), and
〈F,G〉H(E) =∑(u,v)∈E F(u, v)G(u, v) for F,G ∈ H(E).

For a given function f : V → R, the l p norm is given by

‖ f ‖p =
(∑
u∈V

| f (u)|p
)1/p

, 1 � p < ∞

‖ f ‖∞ = max
u∈V

(| f (u)|), p = ∞.

Let A be a set of connected vertices with A ⊂ V . We
denote by ∂A the boundary set of A:

∂A = {u ∈ Ac : ∃v ∈ A with (u, v) ∈ E}, (4)

for which Ac = V \ A is the complement of A.

2.2 Weighted Finite Difference Operators

The (possibly nonlocal) weighted finite difference operator
of a function f ∈ H(V ), denoted by Gw : H(V ) → H(E),
is defined on a pair of vertices (u, v) ∈ E as :

(Gw f )(u, v) = √w(u, v) ( f (v) − f (u)) . (5)

Note that this difference operator is linear and antisymmetric.

The adjoint of the difference operator in (5), denoted by
G∗

w : H(E) → H(V ), is a linear operator which can be
characterized by 〈Gw f, H〉H(E) = 〈 f,G∗

wH〉H(V ) for all
f ∈ H(V ) and all H ∈ H(E). Using the definitions of the
finite weighted difference operator and the inner products
of H(V ) and H(E), the adjoint operator G∗

w of a func-
tion H ∈ H(E) can be expressed at a vertex u ∈ V by
the following expression:

(G∗
wH)(u) =

∑
v∼u

√
w(u, v)(H(v, u) − H(u, v)). (6)

Based on this adjoint, the divergence operator divw =
−G∗

w measures the net outflow of a function ofH(E) at each
vertex of the graph. Note that for every function H ∈ H(E),
the total divergence over the entire set of vertices is zero.
Based on the previous definitions, it can be easily shown that∑
(u,v)∈E

Gw f (u, v) = 0 for f ∈ H(v), and
∑
u∈V

divw F(u) =
0 for F ∈ H(E).

The weighted directional derivative of f at a vertex u
along the edge (u, v) is defined as:

∂v f (u) = √w(u, v)
(
f (v) − f (u)

)
. (7)

Furthermore, we can introduce two discrete upwind deriv-
atives ∂±

v : H(V ) → H(E) by the following expressions:

∂±
v f (u) = √w(u, v)

(
f (v) − f (u)

)±
, (8)

with (x)+ =max(0, x), (x)− = −min(0, x) = max(0,−x).
The (possibly nonlocal)weighted gradient of a given func-

tion f ∈ H(V ), denoted as ∇w : H(V ) → H(V )m , is
defined on a vertex u ∈ V as the vector of all weighted direc-
tional derivatives in (7) with respect to the set of vertices
V :

(∇w f )(u) = (∂v f (u))v∈V . (9)

Analogously, using the notation in (8) we can introduce
two weighted upwind gradients by:

(∇±
w f )(u) = (∂±

v f (u)
)
v∈V . (10)

A family of gradient norm operators ||(∇w f
)||p :

H(V ) → H(V ) with 1 � p < ∞ is given for a function
f ∈ H(V ) as:

||(∇w f
)
(u)||p =

[∑
v∼u

√
w(u, v)

p| f (v) − f (u)|p
] 1
p
. (11)

Analogously, a family of upwind gradient norm operators
||(∇±

w f
)||p : H(V ) → H(V ) with 1 � p < ∞ for a

function f ∈ H(V ) is defined as:
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||(∇±
w f
)
(u)||p =

[∑
v∼u

√
w(u, v)

p|( f (v) − f (u))±|p
] 1
p
.

(12)

In the case p = ∞, the gradient norm operator
||∇w f

∣∣|∞ : H(V ) → H(V ) for a function f ∈ H(V ) is
defined as:

||(∇w f
)
(u)||∞ = max

v∼u

(√
w(u, v)

(
f (v) − f (u)

))
. (13)

Similarly, two upwind gradient norm operators
||∇±

w f
∣∣|∞ : H(V ) → H(V ) for a function f ∈ H(V ) can

be defined as:

||(∇±
w f
)
(u)||∞ = max

v∼u

(√
w(u, v)

(
f (v) − f (u)

)±)
. (14)

Note that the previously introduced operators allow to
measure the regularity of a function f around a vertex u.

An interesting relation between the weighted gradient
norm operator and its upwind variants is given for a func-
tion f ∈ H(V ) by:

||(∇w f
)
(u)||pp = ||(∇+

w f
)
(u)||pp + ||(∇−

w f
)
(u)||pp, (15)

and one can directly deduce that

||(∇±
w f
)
(u)||pp � ||(∇w f

)
(u)||pp. (16)

Thus, the latter operators provide a slightly finer character-
ization of the gradient. For instance, one can remark that
||(∇−

w f
)
(u)||p is always zero if f has a local minimum at u.

The upwind discrete gradient∇−
w has been used in [22,67]

to adapt the Eikonal equation on weighted graphs and to
study itswell-posedness (existence anduniqueness of respec-
tive solutions) with applications in image processing and
machine learning. Moreover, this family of gradients can be
used to construct several nonlocal regularization functionals
on graphs, which can be interpreted as extensions of the total
variation regularization on graphs. For instance:

Jp,w( f ) =
∑
u∈V

||(∇w f )(u)||pp, 1 � p < ∞,

J∞,w( f ) =
∑
u∈V

||(∇w f )(u)||∞,

J±
p,w( f ) =

∑
u∈V

||(∇±
w f )(u)||pp, 1 � p < ∞,

J±∞,w( f ) =
∑
u∈V

||(∇±
w f )(u)||∞.

(17)

These gradients were also used to approximate certain
continuous Hamilton–Jacobi equations on a discrete domain

[22,68]. For example, given two functions f, μ : Ω ⊂ R
n →

R, then any continuous equation of the form:

∂ f (x, t)

∂t
= μ(x)||∇ f (x, t)||p, (18)

can be numerically approximated in a discrete setting as:

∂ f (u, t)

∂t
= μ+(u)||(∇+

w f
)
(u, t)||p − μ−(u)||(∇−

w f
)
(u, t)||p.

(19)

In particular, if μ ≡ 1, p = ∞, and if we employ a
forward Euler time discretization (with a time step size of
�t = 1) this equation can be rewritten as:

f k+1(u) = f k(u) + ||(∇+
w f k

)
(u)||∞, (20)

with f k(u) = f (u, k�t). This can be interpreted as a single
iteration of the following nonlocal dilation-type operator:

f k+1(u) = NLD
(
f k
)
(u), (21)

where NLD : H(V ) → H(V ) is defined as:

NLD
(
f
)
(u) = f (u) + max

u∼v

(√
w(u, v)

(
f (v) − f (u)

)+)
.

(22)

Similarly, for the case μ ≡ −1 and p = ∞ we have:

f k+1(u) = f k(u) − ||(∇−
w f k

)
(u)||∞, (23)

which can be interpreted as an iteration of the following non-
local erosion operator:

f k+1(u) = NLE
(
f k
)
(u), (24)

for which NLE : H(V ) → H(V ) is defined as

NLE
(
f
)
(u) = f (u) − max

u∼v

(√
w(u, v)

(
f (v) − f (u)

)−)
.

(25)

2.3 Our Previous Works on the p- and ∞-Laplacian on
Graphs

In graph theory, there exist different expressions for the p-
Laplacian on graphs [15,43]. In the context of PdEs on graphs
(based on the weighted finite difference and divergence oper-
ators introduced above), we mimic the classical definition of
the p-Laplacian on Euclidean domains to derive a unified
form for two different expressions: the anisotropic and the
isotropic graph p-Laplacian.
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Anisotropic graph p-Laplacian The anisotropic graph
p-Laplacian of a function f ∈ H(V ), denoted by �a

w,p :
H(V ) → H(V ), is defined as:

(�a
w,p f )(u) = 1

2
divw

(
|(Gw f )|p−2 (Gw f )

)
(u), (26)

for 1 ≤ p < ∞. Using (5) and (6), the anisotropic graph
p-Laplace operator of f ∈ H(V ) at a vertex u ∈ V can be
computed by [11,27]:

(�a
w,p f )(u) =

∑
v∼u

√
w(u, v)

p| f (v) − f (u)|p−2( f (v) − f (u)).

(27)

Note that this operator can be seen as the discrete differ-
ential of the p-Dirichlet functional in (17).

If we use the notation:

∂ f

∂e
|u = ∂v f (u), with e = (u, v), (28)

then the anisotropic graph p-Laplacian can be written as:

(�a
w,p f )(u) = 1

2

∑
e=(u,v)

v∼u

∂

∂e

[∣∣∣∣∂ f∂e

∣∣∣∣
p−2

∂ f

∂e

]
|u . (29)

Remark 1 It gets clear that the anisotropic graph p-Laplacian
in (27) can be seen as discrete analogue of the anisotropic
p-Laplacian in the continuous case with f : Ω ⊂ R

n → R,
defined as:

�p f (x) =
n∑

i=1

∂

∂xi

(∣∣∣∣∂ f (x)∂xi

∣∣∣∣
p−2

∂ f (x)

∂xi

)
, (30)

which can be seen as the differential of the continuousDirich-
let functional

∫
Ω

∑n
i=1

∣∣∣ ∂ f (x)∂xi

∣∣∣p dx .
Remark 2 Let us remark that the graph p-Laplacian can be
interpreted as discrete version of the continuous nonlocal p-
Laplacian. Indeed, we consider a complete Euclidean graph
G = (V, E, w), i.e., E = V × V , with V = Ω ⊂ R

n and
f : Ω → R. Then, if we replace the sum in (27) by an
integral, we obtain the nonlocal p-Laplacian [3]:

Lp f (x) =
∫

Ω

μ(x, y, p)| f (y) − f (x)|p−2( f (y) − f (x))dy,

(31)

with μ(x, y, p) = w(x, y)p/2. Note that in the continuous
caseμ : Rn → R is a nonnegative continuous radial function
with compact support and μ(0) > 0 and

∫
Rn μ(x)dx = 1.

Isotropic graph p-Laplacian : The isotropic graph p-
Laplacian, denoted by �i

w,p : H(V ) → H(V ), is defined
as:

(�i
w,p f )(u) = 1

2
divw

(
||∇w f ||p−2

2 (Gw f )
)
(u), (32)

with 1 ≤ p < ∞. Using the notation from above, this oper-
ator can be written fully as:

(�i
w,p f )(u) = 1

2

∑
e=(u,v)

v∼u

∂

∂e

[
||∇w f ||p−2

2
∂ f

∂e

]
|u . (33)

Using (5), (6), and (11), the isotropic graph p-Laplacian of
f ∈ H(V ) at a vertex u ∈ V can be computed by

(�i
w,p f )(u) =

∑
v∼u

w(u, v)
(||∇w f (v)||p−2

2

−||∇w f (u)||p−2
2

)(
f (v) − f (u)

)
. (34)

For the case p = 2 and using either the isotropic or
anisotropic Laplacian operator on graphs, we obtain a dis-
crete variant of the classical (unnormalized) Laplacian:

(�u
w,2 f )(u) =

∑
v∼u

w(u, v) ( f (v) − f (u)) . (35)

Similarly, using scalar products on H(V ) (respectively,
H(E)) which depend on the degree of a vertex (respectively,
the edgeweight) we obtain the discrete normalized Laplacian
on graphs as:

(�w,2 f )(u) =
∑

v∼u w(u, v) f (v)

δw(u)
− f (u). (36)

In the sequel, we will only consider the discrete normalized
Laplacian operator in (36), which we will simply refer to as
Laplacian.

All the above-introduced operators can be used to approx-
imate continuous PDEs involving the p-Laplacian. In partic-
ular, if we consider the case p = 2 the equation

∂ f (x, t)

∂t
= � f (x, t), (37)

can be approximated in a discrete setting as

∂ f (u, t)

∂t
= �w,2 f (u, t). (38)

Employing a forward Euler time discretization with �t = 1,
an evolutionary process can be written as

f k+1(u) = NLM
(
f k
)
(u), (39)
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for which the operator NLM : H(V ) → H(V ) is the well-
known nonlocal mean filter [14], defined as

NLM( f ) =
∑

v∼u w(u, v) f (v)

δw(u)
. (40)

∞-Laplacian : The nonlocal ∞-Laplacian of a function
f ∈ H(V ), denoted by �w,∞ : H(V ) → H(V ), is defined
as [25]:

�w,∞ f (u)
de f.= 1

2

[||(∇+
w f )(u)||∞ − ||(∇−

w f )(u)||∞
]
,

(41)

which can be written fully as

�w,∞ f (u) = 1

2

[
max

(√
w(u, v)

(
f (v) − f (u)

)+)
−max

(√
w(u, v)

(
f (v) − f (u)

)−)]
.

(42)

Remark As in the continuous case, this operator can be for-
mally derived by the minimization of the following energy
on graphs (for p → ∞):

Jw,p( f ) =
∑
u∈V

||(∇w f
)
(u)||pp. (43)

Indeed, it is easy to show [25] that the minimization of
Jw,p( f ) leads to the PdE

�w,p f (u) = 0.

Normalized p-Laplacian : We shortly recall that the
normalized version of the continuous p-Laplacian operator,
referred to as game p-Laplacian, is defined [38] as

�N
p f (x) = 1

p|∇ f (x)|p−2�p f (x). (44)

This operator was recently introduced to discuss a sto-
chastic game called Tug-of-war with noise [60]. It can be
further rewritten as:

�N
p f = (p − 2)

p
�N∞ f + 1

p
� f = a�N∞ f + b� f, (45)

with a = (p − 2)/p and b = 1/p. In the case p = ∞, we
have:

�N∞ f = 1

|∇ f |2�∞ f. (46)

A discrete version of this graph ∞-Laplacian has been
introduced and investigated in [25]. Finally, the discrete nor-
malized p-Laplacian operator of a function f ∈ H(V ),
denoted by �α,β : H(V ) → H(V ), is defined as [26]:

�α,β f = α

2

(||∇+
w f ||∞ − ||∇−

w f ||∞
)+ β�w,2 f, (47)

with α, β � 0 and α + β = 1.

3 A New Family of Graph p-Laplacian with
Gradients Terms

In this section, we propose a new family of discrete oper-
ators on weighted graphs which corresponds to a graph
p-Laplacian with gradients terms. Furthermore, we inves-
tigate an associated Dirichlet problem and study some
connections between the latter, nonlocal continuous PDEs,
and also a stochastic game known as Tug-of-War.

3.1 Definition

Based on the discussed PdE framework on graphs and the
introduced approximations of the p-Laplacian and the ∞-
Laplacian in Sect. 2, we are now able to propose a novel fam-
ily of p-Laplacian operators denoted by �α,β,γ : H(V ) →
H(V ) for a function f ∈ H(V ) by:

�α,β,γ f = α||∇+
w f ||∞ − β||∇−

w f ||∞ + γ�w,2 f, (48)

for constantsα, β, γ � 0 andα+β+γ = 1. By a simple fac-
torization of the ∞-Laplacian, this new family of operators
can be rewritten as:

�α,β,γ f = 2min(α, β)�w,∞ f + (α − β)+||∇+
w f ||∞

−(α − β)−||∇−
w f ||∞ + γ�w,2 f. (49)

As we demonstrate in the following, this formulation
recovers many well-known expressions of the Laplacian,
the ∞-Laplacian, and the p-Laplacian with gradients terms,
depending on the choice of the three parameters α, β, and γ .
First, we discuss the general case γ �= 0:

– for γ = 1 and α = β = 0, the expression (49) recovers
the Laplacian operator:

�α,β,γ f = �w,2 f. (50)

– for α = β �= 0, the expression (48) becomes:

�α,β,γ f = α
(||∇+

w f ||∞ − ||∇−
w f ||∞

)+ γ�w,2 f,

(51)

which is a discrete approximation of the continuous nor-
malized p-Laplacian

�N
p f = 2α�N∞ f + γ� f, (52)
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also recovering the discrete normalized p-Laplacian
operator introduced in (47).

– for α − β > 0, the expression (49) becomes:

�α,β,γ f = (α − β)||∇+
w f ||∞ + 2β�w,∞ f + γ�w,2 f,

(53)

which is a discrete approximation of the continuous p-
Laplacian with additional gradient terms:

�p f = (α − β)||∇ f || + 2β�∞ f + γ� f. (54)

– for α − β < 0, the expression (49) becomes:

�α,β,γ f = (α − β)||∇−
w f ||∞ + 2α�w,∞ f + γ�w,2 f,

(55)

which is also a discrete approximation of the continuous
p-Laplacian with additional gradient terms:

�p f = (α − β)||∇ f || + 2α�∞ f + γ� f. (56)

Next, we discuss the general case of γ = 0:

– for α > β one gets the following expression:

�α,β,γ f = (α − β)||∇+
w f ||∞ + 2β�w,∞ f, (57)

– for α < β one gets the following expression:

�α,β,γ f = (α − β)||∇−
w f ||∞ + 2α�w,∞ f, (58)

– for α = β the expression (49) recovers the ∞-Laplacian
as:

�α,β,γ f = 1

2

(||∇+
w f ||∞ − ||∇−

w f ||∞
)
. (59)

Note that this family of operators is directly related to the
nonlocal average operator:

�α,β,γ f = NLA( f ) − f, (60)

for which we refer to the operator NLA : H(V ) → H(V ) as
‘nonlocal average’ with

NLA( f ) = αNLD( f ) + βNLE( f ) + γNLM( f ), (61)

and the operators NLD, NLE, and NLM as introduced in
Sect. 2. Obviously, this family of operators can be expressed
with the help of nonlocal mean, nonlocal erosion, and non-
local dilation. In particular, for any unweighted graph with a

constant weighting function w ≡ 1, we obtain the following
expressions:

NLD( f )(u) = max
v∼u

f (v),

NLE( f )(u) = min
v∼u

f (v),

NLM( f )(u) =
∑

v∼u f (v)

|v ∼ u| .

(62)

Thus, (61) can be rewritten as:

NLA( f )(u) = αmax
v∼u

f (v) + β min
v∼u

f (v) +
∑

v∼u f (v)

|v ∼ u| .

(63)

3.2 Dirichlet Problem

In the following, we focus on a PdE related to the proposed
family of graph p-Laplacian operators with gradient terms.
In particular, we investigate an associated Dirichlet problem.
Let G = (V, E, w) be an undirected, weighted, and con-
nected graph, A ⊂ V a subset of vertices, and g : ∂A → R a
function defined on the boundary of A. We consider the PdE

{(
�α,β,γ f

)
(u) = 0, u ∈ A,

f (u) = g(u), u ∈ ∂A,
(64)

for the general case γ �= 0. We demonstrate in the following
that the problem (64) has a unique solution.

Theorem 1 Given G = (V, E, w), a set A ⊂ V , and a
function g : ∂A → R, then there exists a unique function
f ∈ H(V ) such that f solves the following equation:

⎧⎪⎨
⎪⎩

α||(∇+
w f
)
(u)||∞ − β||(∇−

w f
)
(u)||∞

+γ (�w,2 f )(u) = 0, u ∈ A

f (u) = g(u), u ∈ ∂A.

(65)

Proof First, we note that (65) can be rewritten as f (u) =
NLA( f )(u).We begin by proving the uniqueness of the solu-
tion of (65) (if it exists) by using the comparison principle.
We then prove its existence by using the Brouwer fixed point
theorem.

Uniqueness Let f and h be two functions having the same
values on ∂A and with f = NLA( f ) and h = NLA(h) on A.
Under these conditions, we can apply Lemma 2 on f and h,
which leads to the fact that the inequality f ≤ h on ∂A can
be extended to A. By exchanging the roles of f and h, we
also obtain the opposite inequality and thus we can conclude
that f = h on A.
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Existence First, let us recall the Brouwer fixed point theo-
rem:A continuous functionmapping from a convex, compact
subset of a Euclidean space to the same set has a fixed point.
We identify H(V ) as Rn and consider the set K = { f ∈
H(V ) | f (u) = g(u) ∀u ∈ ∂A, and m � f (u) � M ∀u ∈
A}, for which m = min

∂A

(
g(u)

)
and M = max

∂A

(
g(u)

)
. By

definition, K is a convex and compact subset ofRn . It is easy
to show that the map f → NLA

(
f
)
is continuous and maps

from K into K . So, by application of the Brouwer fixed point
theorem, the map NLA has a fixed point that is a solution of
NLA

(
f
) = f . This completes the proof. ��

Lemma 2 Given two functions f and h, if f = NLA( f ) and
h = NLA(h) with f ≤ h on ∂A, then f ≤ h on the whole
domain V .

Proof We perform a proof by contradiction. Let us therefore
expect that there exists M ∈ R such that

M = sup
V

( f − h) > 0.

Let B = {u ∈ A : f (u) − h(u) = M}, then by construc-
tion we have B �= ∅ and B ∩ ∂A = ∅. Now, we can claim
that there exists a u0 ∈ B and v ∈ N (u0), such that v /∈ B.
Otherwise, if for each u ∈ A and for each v ∈ N (u) we have
v /∈ B, this would imply that B ∩ ∂A �= ∅ since the graph
G is connected; however, this leads to a contradiction. Thus,
from the definition of M we have

f (u0) − h(u0) ≥ f (u) − h(u) ∀u ∈ N (u0)

h(u) − h(u0) ≥ f (u) − f (u0) ∀u ∈ N (u0).

In particular, we can write

h(v) − h(u0) > f (v) − f (u0).

Based on these inequalities and using the definitions of
nonlocal morphological processes introduced in Sect. 2.2,
i.e., dilation and erosion, we have

max
u∼u0

(√
w(u0, u)max

(
h(u) − h(u0), 0

))
≥ max

u∼u0

(√
w(u0, u)max

(
f (u) − f (u0), 0

))
NLD

(
h
)
(u0) − h(u0) ≥ NLD

(
f
)
(u0) − f (u0). (66)

Similarly, we get:

max
u∼u0

(
−√w(u0, u)min

(
h(u) − h(u0), 0

))
≥ max

u∼u0

(
−√w(u0, u)min

(
f (u) − f (u0), 0

))
h(u0) − NLE

(
h
)
(u0) ≤ f (u0) − NLE

(
f
)
(u0). (67)

Finally, we have

∑
u∼u0

w(u0, u)
(
h(u) − h(u0)

)
∑
u∼u0

w(u0, u)

>

∑
u∼u0

w(u0, u)
(
f (u) − f (u0)

)
∑
u∼u0

w(u0, u)

NLM
(
h
)
(u0) − h(u0) > NLM

(
f
)
(u0) − f (u0). (68)

Note that the previous inequality is strict becausewe know
there exists a v ∈ N (u0) such that h(v) − h(u0) > f (v) −
f (u0).
Using (66), (67), and (68), we can deduce the following

inequalities

αNLD
(
h
)
(u0) + βNLE

(
h
)
(u0) + γNLM

(
h
)
(u0) − h(u0)

αNLD
(
f
)
(u0) + βNLE

(
f
)
(u0)+γNLM

(
f
)
(u0)− f (u0).

and

NLA
(
h
)
(u0) − h(u0) > NLA

(
f
)
(u0) − f (u0)

⇒ h(u0) − h(u0) > f (u0) − f (u0)

⇒ 0 > 0.

This clearly leads to a contradiction and concludes the
proof. ��

3.3 Connection to Tug-of-War Games and
Corresponding PDEs

Certain PDEs which involve a variant of the p-Laplace oper-
ator are related to a stochastic game called Tug-of-War, see
e.g., [50,59] and references therein. In the following, we
demonstrate that the proposed family of graph p-Laplacian
operators recovers value functions for this game. In partic-
ular, we discuss the connection to conventional Tug-of-War
games [59], the biased Tug-of-War game [58], and Tug-of-
War games with noise [60].

Tug-of-War games Let us briefly review the notion of
the stochastic Tug-of-War game as introduced by Peres,
Schramm, Sheffield, and Wilson [59]. Let Ω ⊂ R

n be an
open, connected subset and g : ∂Ω → R a real function.
Let ε > 0 be fixed. The dynamic of this two-player zero-sum
game can be explained as follows: A token is placed at an
initial position x0 ∈ Ω . At the kth stage of the game, Player
I and Player II select two respective points x Ik and x I Ik within
a local ball Bε(xk−1) ⊆ Ω with radius ε centered in xk−1.
The game token is then moved to a new location xk which
is chosen as xk = x Ik with probability P = 1

2 or xk = x I Ik
else. In other words, a fair coin is tossed to determine the new
location of the game token. After the kth stage of the game,
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if xk ∈ Ω , the game continues to stage k + 1. Otherwise,
if xk ∈ ∂Ω , then the game ends and Player II pays Player I
the amount g(xk) defined on the boundary of Ω . Hence, the
dynamics of the Tug-of-War game lead to the fact that Player
I attempts to maximize his payoff, while Player II attempts
to minimize it.

According to the dynamic programming principle (DPP),
the value functions for Player I and Player II for the above-
described conventional ε-turn Tug-of-War game satisfy the
relation

⎧⎨
⎩ f ε(x) = 1

2

[
max

y∈Bε(x)
f ε(y) + min

y∈Bε(x)
f ε(y)

]
, x ∈ Ω

f ε(x) = g(x), x ∈ ∂Ω.

(69)

In [59], the authors show that for ε → 0, one has f ε →
f in a certain sense, for which f is a solution of the ∞-
Laplacian equation:

{
�∞ f (x) = 0, x ∈ Ω

f (x) = g(x), x ∈ ∂Ω.
(70)

Now, let us investigate the Euclidean graphG=(V, E, w)

with V = Ω ⊂ R
n , E = {(x, y) ∈ V × V | w(x, y) > 0},

and

w(x, y) =
{
1, if |y − x | � ε,

0 otherwise.
(71)

We use the following relations, which can be easily
obtained from the definitions of the L∞ norms of morpho-
logical gradients in (14)

max
y∈Bε(x)

f (y) = ||(∇+
w f
)
(x)||∞ + f (x),

min
y∈Bε(x)

f (y) = f (x) − ||(∇−
w f
)
(x)||∞.

By replacing the max and min functions in (69) by their
respective discrete gradient variants, we get:

1

2

(||(∇+
w f )(x)||∞ − ||(∇−

w f )(x)||) = 0. (72)

It gets clear that in the case γ = 0 and α = β = 0.5
our formulation (48), which in this case represents the ∞-
Laplacian on graphs, coincides with the value function (69)
of the conventional Tug-of-War game.

Biased Tug-of-War games Now, we concentrate on
another variant of the conventional Tug-of-War game. To
obtain the biasedTug-of-War game, the above variant ismod-
ified as follows [58]: One considers two fixed real numbers

α, β > 0 with α + β = 1. The biased Tug-of-War game fol-
lows the same game dynamics as described above with the
only difference that the probability of the next location is set
for x Ik as α and for x I Ik as β.

According to the DPP, the value function in this case
becomes [58]:

⎧⎨
⎩

f ε(x) = α max
y∈Bε(x)

f ε(y) + β min
y∈Bε(x)

f ε(y), x ∈ Ω

f ε(x) = g(x), x ∈ ∂Ω.

(73)

When ε → 0, the solution converges to the ∞-Laplacian
equation with gradient terms:

�∞ f (x) + c||(∇ f )(x)|| = 0, (74)

and c which depends on α and β [58].
Analogously, by replacing the min and max functions in

(73) by their respective discretized gradient versions we get:

α||(∇+
w f )(x)||∞ − β||(∇−

w f )(x)||∞ = 0, (75)

which can be written in terms of the proposed family of oper-
ators as �α,β,γ = 0 for α > 0, β > 0, and γ = 0.

Tug-of-War game with noise This game also follows
the same game dynamics as the classical Tug-of-War game.
However, here the probability to have the token location to
be x Ik or x I Ik is α

2 , while with probability
β
2 the next location

is chosen as a random point in the ball Bε(x). The authors of
[50] have shown that the value functions of this game satisfy
the DPP and can be given as

f ε(x) = α

2

[
max

y∈Bε(x)
f ε(y) + min

y∈Bε(x)
f ε(y)

]

+ β

|Bε(x)|
∫
Bε(x)

f ε(y)dy, x ∈ Ω,

f ε(x) = g(x), x ∈ ∂Ω

(76)

and α, β > 0 such that α + β = 1.
The authors of [60] show that when ε → 0, f ε(x) →

f (x) and the solution of (76) converges to the solution of
�p f (x) = 0 with p > 2, defined as:

{
�p f (x) = div(||∇ f (x)||p−2 · ∇ f (x)) = 0, x ∈ Ω

f (x) = g(x), x ∈ ∂Ω,

(77)

Analogously, by replacing the min and max functions in
(76) by their respective discretized gradient versions, and
using α = β and γ �= 0, we can rewrite (76) as:
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α
[||(∇+

w f )(x)||∞ + ||(∇−
w f )(x)||∞

]+ γ (�w,2 f )(x) = 0

(78)

Now if we consider the same Euclidean graphG, the solu-
tion of the following equation:

�α,β,γ f ε(x) = 0, (79)

corresponds to the following DPP:

f ε(x) = α max
y∈Bε(x)

f ε(y) + β min
y∈Bε(x)

f ε(y)

+ γ

|Bε(x)|
∫
Bε(x)

f (y)εdy on Ω,
(80)

This DPP corresponds to the biased Tug-of-War with
noise, with the difference that the probability for x Ik being
the next location is α, while being x I Ik is β, and for a random
point is γ .

NonlocalTug-of-War In this section,wedemonstrate that
the proposed graph p-Laplacian operator with gradient terms
corresponds to a nonlocal Tug-of-War game.We have shown
that for particular local Euclidean graphs this formulation
corresponds to many known Tug-of-War games. Now if we
consider general weighted graphs, we show that our formu-
lation corresponds to nonlocal Tug-of-War games. For the
sake of brevity, we only illustrate this observation for the
case α = β = 1

2 , and γ = 0, but the same interpretation still
holds for general α, β and γ values.

If we consider a complete weighted graphG = (V, E, w)

for α = β = 1
2 , γ = 0, and u ∈ N (u), then we have:

�α,β,γ f (u) = ||(∇+
w f )(u)||∞ − ||(∇−

w f )(u)||∞
= max

v∈V

(√
w(u, v)( f (v) − f (u))

)
+ min

v∈V

(√
w(u, v)( f (v) − f (u))

)
= 0.

(81)

One can show that this equation is equivalent to the fol-
lowing condition:

f (u) = max
y∈V

(
min
z∈V

( √
w(u, y)√

w(u, y) + √
w(u, z)

f (y)

+
√

w(u, z)√
w(u, y) + √

w(u, z)
f (z)

))
.

(82)

If one sets now

P(u, y, z) =
√

w(u, y)√
w(u, y) + √

w(u, z)
, (83)

we can write:

f (u) = max
y∈V

(
min
z∈V (P(u, y, z) f (y)

+ (1 − P(u, y, z)) f (z))) . (84)

This relationship can be interpreted as a nonlocal Tug-of-War
game due to the generality of the weight function w.

For a general weighted Euclidean graph and setting γ =
0 and α = β = 0.5, the proposed graph p-Laplacian is
connected to a Tug-of-War game that can be interpreted as
being nonlocal. The game dynamics for this novel stochastic
game are the same as described above except that the ε-ball is
replaced by a (possibly) nonlocal neighborhood N (xk−1) ⊂
Ω , given as

N (xk−1) = {x ∈ Ω | w(x, xk−1) > 0}. (85)

For this variant, the token at the kth stage of the game is
moved to a new destination xk ∈ Ω , chosen randomly such
that xk = x Ik with a probability

P =
√

w(xk−1, x Ik )√
w(xk−1, x Ik ) +

√
w(xk−1, x I Ik )

, (86)

and xk = x I Ik with a probability 1 − P .
Using the relations in (83) and (84), this leads exactly to

�∞,w f (x) = 0. (87)

3.4 Connection to Continuous Nonlocal PDEs

We now discuss the relationship of the proposed family of
graph operators with certain continuous nonlocal PDEs. Let
G = (V, E, w) be a Euclidean graph with V = Ω ⊂ R

n ,
E = {(x, y) ∈ V × V | w(x, y) > 0}, and

w(x, y) =
{

1
|x−y|2s x �= y, s ∈ [0, 1]
0 otherwise.

(88)

In the case γ = 0 and α = β �= 0, it gets clear that the
proposed family of graph p-Laplacian in (48) corresponds
to the Hölder ∞-Laplacian equation, recently proposed by
Chambolle et al. in [16], which is given as

�w,∞ f (x) = 1

2

[
max

y∈Ω,y �=x

(
f (y) − f (x)

|y − x |s
)

+ min
y∈Ω,y �=x

(
f (y) − f (x)

|y − x |s
)]

.

(89)
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This operator is formally derived from the minimization
of the following energy functional

∫
Ω

∫
Ω

[ f (y) − f (x)|p
|x − y|p×s

dxdy (90)

with p → ∞.
In [16], the authors show that the equation

{
�w,∞ f (u) = 0, u ∈ Ω

f (u) = g(u), u ∈ ∂Ω,
(91)

has a unique solution assuming some mild conditions on g.
For the case α = β = 0, it gets clear that this formulation

recovers the continuous nonlocal p-Laplacian equation given
as∫
Ω

w(x, y)
(
f (y) − f (x)

)
dy = 0. (92)

This operator has been recently used in many applications
including continuum mechanics, population dynamics, and
many different nonlocal diffusion problems [4]. One partic-
ular special case is given by

w(x, y) =
{

1
|y−x |n+2s , x �= y, s ∈ [0, 1],
0, otherwise.

(93)

Here, one recovers the continuous fractional Laplacian,
which is commonly used to model anomalous diffusion:

(−�)s f (x) = Cn,s

∫
Rn

f (y) − f (x)

|y − x |n+2s (94)

with a normalization factor Cn,s .
Finally, we underline that in the most general case (with

arbitrary α, β, γ , and w), the proposed family of nonlocal
graph p-Laplacian in (48) corresponds to PdEs which inter-
polate between the∞-Laplacian, the Laplacian, and gradient
terms.

4 Unified Interpolation for Inverse Problems on
Images and Point Clouds

In this section, we illustrate the behavior of the proposed
family of graph p-Laplace operators with gradient terms by
using it to solve several selected inverse problems,which cor-
respond to restoration or interpolation problems on graphs.

Many tasks in computer vision and image processing can
be formulated as interpolation problems. Image and video
colorization [46], inpainting [5,63], and semi-supervised

segmentation [33,74] are examples of these interpolation
problems. In general, interpolation consists of estimating
appropriate values in regions of missing data while staying
coherent with respect to the given data. Until today, many
methods have been developed and proposed for image inter-
polation [14,27,34,68]. Among them, a significant amount
of methods is based on local or nonlocal PDEs or variational
methods.

In this work, we propose to use the family of graph
p-Laplace operators introduced in Sect. 3, as a unified frame-
work.Amongother tasks, this framework canbe used to solve
semi-supervised segmentation or clustering, image inpaint-
ing, as well as colorization of point clouds. To perform this
task, we propose to solve the discussed Dirichlet problem
from (64):

{
�α,β,γ

(
f
)
(u) = 0, u ∈ A,

f (u) = g(u), u ∈ ∂A,
(95)

for which A ⊂ V is the subset of vertices associated with the
missing information. Note that the initial value function g is
application dependent and will be defined for each applica-
tion in the sequel.

To solve (95), we make use of the following associated
evolution equation problem:

⎧⎪⎨
⎪⎩

∂
∂t f (u, t) = �α,β,γ f (u, t), u ∈ A,

f (u, t) = g(u), u ∈ ∂A,

f (u, t = 0) = f0(u), u ∈ A,

(96)

for which f0 is an initial function that is also application
dependent.

To solve (96) iteratively we use an explicit forward Euler
time discretization:

∂ f

∂t
(u, t) = f n+1(u) − f n(u)

�t
(97)

with f n(u) = f (u, n�t).
Hence, we can try to solve (96) by the following iteration

scheme:

⎧⎪⎨
⎪⎩

f n+1(u) = f n(u) + �t�α,β,γ f n(u), u ∈ A,

f n+1(u) = g(u), u ∈ ∂A,

f 0(u) = f0(u), u ∈ A.

(98)

Using �α,β,γ = NLA( f ) − f and setting �t = 1, we
get the following nonlocal average filter, which is a convex
combination of a dilation, an erosion, and a nonlocal mean
process:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f n+1(u) = αNLD( f n)(u) + βNLE( f n)(u)

+ γNLM( f n)(u), u ∈ A,

f n+1(u) = g(u), u ∈ ∂A,

f 0(u) = f0(u), u ∈ A.

(99)

4.1 Graph Construction

In order to apply the deduced iteration scheme in (99), we
first have to discuss how to construct a particular graph for
given data. In general, there exist several popular methods
to transform any discrete data into a weighted graph struc-
ture. Considering a set of vertices V such that the data are
described by functions of H(V ), the construction of such a
graph consists in modeling the neighborhood relationships
between the data through the definition of a set of edges E
and using a pairwise distance measure μ : V × V → R

+.
In the particular case of images, edges based on geomet-
ric neighborhoods are particularly well adapted to represent
the geometry. Typically, one constructs one of the following
graphs :

– The grid graph is one of the most natural structures to
describe an image by a graph. Each pixel is connected by
an edge to its adjacent neighbors. Classical grid graphs
are 4-adjacency grid graphs and 8-adjacency grid graphs.
Larger neighborhoods can be used to obtain nonlocal
graphs.

– The k-neighborhood graph (k-NNG), for which each
vertex u is connected with its k-nearest neighbors with
respect to a distance measure μ. Such construction
implies to build a directed graph, since this neighborhood
relationship is not symmetric. Nevertheless, an undi-
rected graph can be obtained by adding an edge between
two vertices u and v if u is among the k-nearest neighbors
of v or if v is among the k-nearest neighbors of u. Note
that this is the most straightforward structure to describe
a point cloud with a graph, e.g., see [6].

The similarity between two vertices is computed by a sim-
ilarity measure s : E → R

+, which satisfies :

w(u, v) =
{
s(u, v), if (u, v) ∈ E

0, otherwise

Common similarity functions are the following :

s0(u, v) ≡ 1,

s1(u, v) = exp
(
−μ
(
f 0(u), f 0(v)

)
/σ 2
)
,

for which the variance parameter σ > 0 usually depends on
the variation of the function μ.

The function f used to describe the data at a node u can
be considered as a feature vector. Several choices can be con-
sidered for the expression of the feature vectors, depending
on the nature of the features to be used for graph process-
ing. In the context of image processing, one can use a simple
grayscale or color feature vector Fu , or a patch feature vector
Fτ
u = ⋃

v∈Wτ (u) Fv (i.e., the set of values Fv for which v

is in a square window Wτ (u) of size (2τ + 1) × (2τ + 1)
centered at a vertex pixel u). Note that the latter vector allows
to incorporate nonlocal features for τ ≥ 1.

Patch construction for 3D point clouds Extending the
notion of a patch to three-dimensional point cloud data is not
an easy task. In [49], we have proposed a novel definition of
patches that can be used for any graph representation associ-
ated with meshes or point clouds. In particular, around each
vertexwe build a two-dimensional grid (the patch) describing
the close neighborhood. This grid is defined on the tangent
plane of the point (i.e., the vertex). Then the patch is ori-
ented accordingly, and finally the patch is filled in with a
weighted averageof the graph signal values in the local neigh-
borhood. The first step consists in estimating the orientation
of each patch. The second step consists in the actual patch
construction. The set of values inside the patch of the vertex
u are denoted as P(u). Let Ck(u) denote the kth cell of the
constructed patch around u with k ∈ {1, . . . , n2}. With the
proposed patch construction process, one can define the set
Vk(u) = {v | p′

v ∈ Ck(u)} as the set of vertices v that was
assigned to the kth patch cell of u. Then, the patch vector

is defined as P(u) =
⎛
⎝

∑
v∈Vk (u)

w(ck ,pv) f 0(v)

∑
v∈Vk (u)

w(ck ,pv)

⎞
⎠

T

k∈{1,...,n2}
with

w(ck,pu) = exp(−||ck−p′
u ||22

σ 2 ), for which ck are the coordi-
nates’ vectors of the kth patch cell center. This weighting
enables us to take into account the point distribution within
the patch cells in order to compute theirmean feature vectors.
The Fig. 1a shows our patch construction method. Figure 1b,
c demonstrates that points with similar geometric configura-
tions are similar with respect to the patch distance.

4.2 3D Colorization

Image colorization is the process of adding colors to mono-
chromatic images. Since color images are often much more
appealing than their grayscale versions, colorization has
attracted interest, especially in the movie industry. Early
attempts were made by coloring each frame of a movie by
hand. It gets easily clear that a manual colorization process
is tedious, is time-consuming, and requires artistic skills to
precisely add the appropriate colors to the image. There-
fore, computer-aided colorization has been firstly introduced
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(a)

(b) (c)

Fig. 1 a The interpolation of the content of the patch with a patch
length of l > 0. o0(u) and o1(u) are the orientation of the patch P(u)

at a point pu . Elements marked by a “times” symbol correspond to the
projected neighbors p′

u of the point pu on the patch. These projections
are used to deduce values of each patch cell (a “o” symbol) by a
weighted average of the associated graph signal values. bA point cloud
with a selected vertex (in white) and the respective patch descriptor
of that vertex. c A point cloud colored by the patch-based distance
between all points and a selected one from most similar (in red) to least
similar (in blue) (Color figure online)

by Markle [52]. One of the first computer-aided coloriza-
tion processes has been used for the colorization of the
Casablancamonochrome film in the 1980s. Since then, many
movies have been converted into color versions and coloriza-
tion processes have naturally received a lot of attention in the
image-editing community. In recent years, many interactive
colorization techniques have been proposed to effectively
colorize images with significantly reduced amount of user
efforts. Most of these techniques are based on color input
examples (named color scribbles) given by a user, which
are then propagated over the whole image. For instance, the
method by Levin et al. [46] uses strokes to indicate colors
for certain pixel regions. The whole image is then colorized
using an optimization method which is based on intensity-
continuity constraints, assuming adjacent pixels with similar
intensities have similar colors. For recent techniques, see,
e.g., [39,66,72] and references therein.

Recently, there has been a strong development of 3D
acquisition techniques. This has led to a widespread acquisi-
tion of large amounts of 3D data and has brought point clouds
to the forefront for a number of applications [54,61,62], and
consequently, 3D point cloud data are now a new central data
type in computer vision and graphics. However, many point
clouds are colorless and, as for images, it might be desirable

to add color information to 3D point clouds to add more real-
ism to the scene. As pointed out in [44], this is of particular
interest for cultural heritage applications where one wants to
represent objects, e.g., statues, as colorful as they were at the
time point of their creation.

Extending the colorization process to 3D data, such as
meshes or point clouds, is not an easy task. Indeed, to col-
orize monochrome images the luminance channel is used to
determine pixels similarities which enable color diffusion
from scribbles. In the case of 3D data, however, the intensity
channel is missing and similarities between points have to be
determined in a different way. To the best of our knowledge,
Leifman and Tal [44] are the only researchers which have
proposed a method for mesh colorization up to now. Their
central idea is to define similarities between mesh vertices
using the spin image descriptor [37] together with a feature
line detection. The colorization is then performed by solving
a constrained quadratic optimization problem (as in [46]).
They have further extended this work by pattern classifica-
tion to reduce the set of color scribbles [45].

In the seminal work of Leifman and Tal [44], the authors
have shown that extending the process of image coloriza-
tion to 3D meshes is possible, but they do not consider the
most recent type of 3D data nowadays available: 3D point
clouds. As extending colorization to meshes is difficult, this
is even more the case for 3D points clouds. Indeed, this type
of data is very different to classical data structures used in
computer graphics, e.g., triangulated meshes. In the case of
3D point clouds, the data take the form of unstructured raw
point samples without any additional geometry. Since often
a tremendous amount of 3D points is captured by a 3D acqui-
sition device, no explicit mesh structure is required. This has
the advantage that the high density of 3Dpoint clouds enables
to capture an object accurately without the need to model it.
Moreover, for many applications it is important for conserva-
tion purposes to directly consider the raw point cloud and not
a post-processedmesh because the process of mesh sampling
generally leads to a loss of accuracy and details. Therefore,
it is highly desirable to use methods which perform coloriza-
tion of raw 3D point clouds directly. Unfortunately, since 3D
points clouds have no intrinsic connectivity, it is very chal-
lenging to formulate a variational algorithm for 3D point
cloud colorization, since the definition of basic differential
operators on meshes have specific connectivity requirements
which are only available for triangular meshes. As a conse-
quence, the state-of-the-art methods proposed by Leifman
and Tal in [44] for mesh colorization cannot be directly
adapted to raw 3D point clouds. In the context of this work,
we propose to interpret colorization as a particular color
interpolation problem, for which the color information is the
missing data.

In the following, we assume that the given data are defined
on a general domain represented on a graph G = (V, E, w).
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Fig. 2 Comparison of the colorization results of [44] (first row) with
the one of our approaches (second row). Our method considers directly
the raw point cloud and does not require any preprocessing, whereas

method of [44] processed by resampling and re-meshing input data
before colorization step (Color figure online)

Fig. 3 From left to right: uncolored dwarf, half-colored dwarf, fully
colored dwarf (Color figure online)

Let f 0 : V → R
3 be a function that assigns RGB colors to

vertices. Let A ⊂ V be the subset of vertices with unknown
colors and ∂A the subset of vertices for which g : ∂A → R

3

gives the user-specified color scribbles. Then, we are able to
use the unified framework proposed in Sect. 4 and, in partic-
ular, the iteration scheme (99) to perform 3D colorization of
point cloud data.

Figure 3 shows exemplary results of 3D point cloud col-
orization of a dwarf figurine. We also compared our work
with the state-of-the-art method [44]. The results of this com-
parison are presented in Fig. 2. The major drawback of [44]

is the restricted applicability of this method to meshes only.
For our proposed method, we have only considered the con-
nection points of the mesh while discarding all given mesh
connectivity information. As shown, e.g., in the third col-
umn of Fig. 2, our approach needs less color strokes, and we
obtain much less color bleeding effects. Note that the pro-
posed method in [44] also requires mesh preprocessing, such
as resampling and re-meshing (see the vasis example in the
last column of Fig. 2), whereas our method can be applied
directly on the raw point cloud data. Figure 4 shows another
example of colorization on a 3D point cloud, representing a
bas-relief.

4.3 Nonlocal Inpainting

Digital inpainting is a fundamental problem inmodern image
processing and hasmany applications in different fields. This
task can be simply formulated as reconstructing a damaged
or incomplete image by filling the missing information in
certain regions. In recent years, many methods have been
developed for interpolating geometry [8,17], texture [21,24],
or both geometry and texture [5,31]. Among the proposed
interpolationmethods, a significant number of algorithms are
based on PDEs or variational methods, see, e.g., [5,63] and
references therein. Since the seminal work of Buades et al.
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Fig. 4 Colorization of a scanned bas-relief (Color figure online)

on nonlocal filtering [14], many nonlocal methods for image
inpainting have gained considerable attention. This is in part
due to their superior performance for textured images, which
is a known weakness of purely local methods. Recent works
tend to unify local and nonlocal interpolation approaches
[33]. A variational framework for nonlocal image inpainting
has been presented in [5]. A discrete nonlocal regularization
framework for image and manifold processing has been pro-
posed in [32]. This framework has been used to unify local
geometric methods and nonlocal exemplar-based methods
for video inpainting.

With respect to (95), we propose to formulate the inpaint-
ing problem as follows: A is the set of pixels with missing
information, g : ∂A → R

c represents the known information
(for which c is the number of color channels of the image),
and f : A → R

c represents the image to be reconstructed.
Using this notation, we are able to use the iteration scheme
(99) to perform nonlocal inpainting.

We illustrate this approach in Fig. 5 for different values
of the parameters α, β, γ : α = β = 0, γ = 1 corresponding
to �w,2; α = β = 0.5, γ = 0 corresponding to �w,∞;
α = γ = 0, β = 1 corresponding to an erosion process; and
γ = β = 0, α = 1 corresponding to a dilation process. In
this example, the constructed graph is a nonlocal grid graph
built by using a 11 × 11 neighborhood window and 5 × 5
patches with a data-dependent weight function as discussed
above in the case of point cloud data.

Figure 6 presents another application of graph inpainting
for a texture reconstruction on colored 3D point cloud data.
Following the idea presented in [48], the graph is built as a
nonlocal k-NNG graph and the function f to be interpolated
is associated with a color vector at each vertex of the graph.

Fig. 5 Illustration of image inpainting using a nonlocal graph. Results
have been computed using different values of the parameters α, β, and
γ . See text for more details

Applying again the unified frameworkproposed inSect. 4,we
are able to show results for different values of the parameters
α, β, γ in Fig. 6, which correspond to �w,∞, �w,2, a dila-
tion process, and an erosion process, respectively. Figure 4
shows the inpainting on images on point clouds representing
degraded antique objects. Figure 8 presents both geometric
and image inpainting on a spherical point cloud.

4.4 Semi-supervised Segmentation and Classification

In the case of semi-supervised image segmentation, graph-
based approaches have become very popular in recent years
and many graph-based algorithms have been proposed, e.g.,
graph-cuts [12], random walkers [35], shortest path meth-
ods [7,30], watershed algorithms [10,20,70], or frameworks
that unify some of the previous methods, such as power-
watershed [19,65]. Recently, these algorithms have been
embedded into a common general framework [19], which
allows them to be interpreted as special cases. Several pop-
ular graph clustering approaches [7,20,22,30,53] consist in
computing a graph partition from a set of user-defined seeds
and a specified metric. For further details, we refer the inter-
ested reader to [22] (Figs. 7, 8).

In the context of this work, we propose to consider the
semi-supervised segmentation task as an interpolation prob-
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Fig. 6 Illustration of texture inpainting on a colored 3D point cloud
using a nonlocal graph for different values of the parameters α, β, and
γ . See text for more details

Fig. 7 Restoration of antique objects. a Original vasis, b vasis to
inpaint, c restored vasis, d original wall, e wall to inpaint, f restored
wall

Fig. 8 Inpainting on a spherical point cloud

lem, for which the function to be interpolated is the label
function specifying the partition. Using (95) and considering
a partition into two classes A and B, the initial label function
g is defined as follows

⎧⎪⎨
⎪⎩
g(u) = −1 if u ∈ A

g(u) = 1 if u ∈ B

g(u) = 0 otherwise

(100)

After convergence to a solution f of (95), the class member-
ship can be easily computed by simply thresholding the sign
of f .

Remark In the case of N > 2 classes, a multiphase segmen-
tation can be performed by applying the iteration scheme (95)
N times and considering the label A as a class and B as the
other classes. In this case, the label function L , associating
a class with each vertex, defined as L : V → {Ci }i=1,...,N

with {Ci } the set of class labels, is computed as:

L(u) = Ci | fi (u) = max
j=1,...,N

f j (u).

Real data clustering In this paragraph, we present some
experiments for label diffusion based on the proposed fam-
ily of graph p-Laplace operators �α,β,γ for the task of
semi-supervised clustering. For testing, we use three stan-
dard databases from the literature which are composed
of handwritten digits: MNIST [42], OPTDIGITS [2], and
PENDIGITS [1]. For our experiments, we have merged both
the training and the test data set (as also performed in [13]),
resulting in data sets with 70,000, 5620, and 10,992 objects
for MNIST, OPTDIGITS, and PENDIGITS, respectively.

For the task of semi-supervised classification, we consider
each object of the database as a node of a graph and each
object of the database is represented by a feature vector. To
build a graph on these databases, we use the k-NNG graph
construction described in Sect. 4.1 with k = 10 as performed
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Fig. 9 Illustration of semi-supervised data clustering. The left figure
(seeds) shows a graph built on a subset of the database of handwritten
digits (0’s, 1’s, and 6’s) with some nodes initially labelized (in green,
blue, and purple) for each class. The right figure shows the results of
the label diffusion on the graph. See text for more details (Color figure
online)

in [13]. We perform our experiments in two different ways,
depending on the databases:

– For the OPTDIGITS and PENDIGITS databases, we
used a preprocessed version of the data, giving a constant
size of feature vectors and invariance to small distortions
(see [2] and [1] for more details on the preprocessing
routines). We then determine the k-nearest neighbors of
a node by using the Euclidean distance as metric.

– For the MNIST database, we use the original data from
the database (for which the digits are stored as small
images). To compute the k-nearest neighbors of a node,
we used the two-sided tangent distance [41] as metric,
which gives invariance to small affine transforms.

To compute weights for the edges between vertices, we
use the Gaussian kernel similarity w(u, v) = s1(u, v) as
discussed in Sect. 4.1, for which μ is the metric used dur-
ing k-NN graph construction. Since the value choice of
the variance parameter σ has a significant impact on the
results, we consider two strategies to automatically com-
pute its value: We use either a global scaling parameter
σ > 0 or a local parameter σi for each vertex, as proposed in
[73]. In this particular case, the similarity function becomes:

w(u, v) = exp −μ(u,v)2

σuσv
, for which σu is the local scaling

parameter at vertex u. We computed each σu as the dis-
tance to the M th closest vertex to u. For the second strategy,
we utilize a method proposed in [40]. The authors robustly
estimate a global as well as a local σ parameter. In this
work, we only use the global estimation, which is performed
as: σ̂ = 1.4826median(||ES | − median|ES ||), for which
ES is the set of local residuals in the graph computed as:
Eu = (

∑
v∼u f (u) − f (v))/

√|v ∼ u|2 + |v ∼ u| for a ver-
tex u. For further details and justifications, see [40].

We can now apply the iteration scheme (99) to perform
clustering on the discussed digit databases. For testing, we

Fig. 10 Semi-supervised classification results for the MNIST data-
base. The x-axis gives the amount of labelized vertices, and y-axis shows
the classification rate. Best results were achieved using a local scaling
parameter. See text for more details

Fig. 11 Semi-supervised classification results. As in the case of the
MNIST database, best results were achieved using a local scaling para-
meter. See text for more details

Fig. 12 Semi-supervised classification results for the PENDIGITS
database. As for the cases of the MNIST and OPTDIGIT databases,
best results were achieved using a local scaling parameter. See text for
more details

perform ten runs for each algorithm and we use a fixed per-
centage of already labelized vertices, whose positions are set
randomly for each run. A typical labeling result is shown
in Fig. 9. To evaluate our method, we compare the proposed
methodwith themost effectivemethod in the literature called
multiclass total variation clustering (MTV) [13]. We show
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results for an optimized choice of parameters α, β, γ . As
can be seen from the results on the MNIST (Fig. 10) and
PENDIGITS (Fig. 12) databases, our method outperforms
the state-of-the-art method, while for OPTDIGITS (Fig. 11)
the results are a little bit worse, but comparable.

5 Conclusion

In this paper, we have introduced a novel family of graph p-
Laplacian operators with gradient terms. These partial differ-
ence operators interpolate between nonlocal ∞-Laplacian,
nonlocal Laplacian, and gradient terms on graphs. We con-
sidered an associated Dirichlet problem for this class of
operators and have proven the existence and uniqueness of
respective solutions. We also investigated the connections
between the respective PdEs, nonlocal continuous PDEs, and
stochastic Tug-of-War games. Finally, we have demonstrated
the applicability of these operators in terms of a unified
framework to solvemany inverse problems in image process-
ing, 3D point cloud processing, and machine learning.
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