
Eikonal equation adaptation on weighted graphs: fast

geometric diffusion process for local and non-local image

and data processing

Xavier Desquesnes, Abderrahim Elmoataz, Olivier Lezoray

To cite this version:

Xavier Desquesnes, Abderrahim Elmoataz, Olivier Lezoray. Eikonal equation adaptation on
weighted graphs: fast geometric diffusion process for local and non-local image and data pro-
cessing. Journal of Mathematical Imaging and Vision, Springer Verlag, 2013, 46 (2), pp.238-257.
.

HAL Id: hal-00932510

https://hal.archives-ouvertes.fr/hal-00932510

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00932510

Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

Eikonal equation adaptation on weighted graphs: fast geometric
diffusion process for local and non-local image and data processing

Xavier Desquesnes · Abderrahim Elmoataz · Olivier Lézoray

Received: date / Accepted: date

Abstract In this paper we propose an adaptation of the Ei-

konal equation on weighted graphs, using the framework

of Partial difference Equations, and with the motivation of

extending this equation’s applications to any discrete data

that can be represented by graphs. This adaptation leads to

a finite difference equation defined on weighted graphs and

a new efficient algorithm for multiple labels simultaneous

propagation on graphs, based on such equation. We will sh-

ow that such approach enables the resolution of many appli-

cations in image and high dimensional data processing using

a unique framework.

Keywords Eikonal equation · weighted graph · non-local

image processing · active contour · PdE · fast marching ·
high dimensional data

1 Introduction

The main goal of this paper is to propose an adaptation of the

Eikonal equation on weighted graphs, using the framework

of Partial difference Equations [17], with the motivation of

extending this equation’s applications, to any discrete data

that can be represented by graphs. This adaptation leads to a

finite difference equation whose coefficients are data geom-

etry dependent, and that leads to an efficient algorithm, as

an extension of the Fast Marching algorithm, to propagate

multiple fronts without restriction in the direction of their

This work was supported under a doctoral grant of the Conseil

Régional de Basse-Normandie and the Coeur et Cancer association.

X. Desquesnes, A. Elmoataz and O. Lézoray

Université de Caen Basse-Normandie

GREYC - UMR CNRS 6972, Image Team, ENSICAEN

6. Bvd Marechal Juin, 14050 Caen, FRANCE

Tel.: +33231452724

E-mail: {xavier.desquesnes, abder, olivier.lezoray}@unicaen.fr

propagations. We will show that the combination of both co-

efficients and graph topology enables the resolution of many

applications in image and high dimensional data processing.

Many applications involve data defined on topologically

complex domains. These data can be defined on manifolds

(e.g., a sphere) or irregularly shaped domains, defined on

network-like structures (e.g., network communities), or de-

fined as high dimensional point clouds such as collections of

features vectors. Such unorganized data can be conveniently

represented as graphs, where the vertices represent initial

data and the edges represent interactions between them. Mo-

reover, the use of a graph representation for usual images

also enables to take into account local and non-local inter-

actions and leads to very powerful tools for non-local image

processing [8,19].

Processing and analyzing such structured types of data is

a major challenge for both the image and machine learning

communities. Hence, it is very important to transfer many

tools which were initially developed on usual Euclidean spa-

ces and proven to be efficient for many problems dealing

with usual image and signal domains, to graphs and net-

works.

Classical approaches for graph processing mainly come

from graph theory and one can quote two main categories

for these methods. Methods of the first category are based

on the minimization of an energy with applications in semi-

supervised segmentation. One can quote graph cuts [5], ran-

dom walks [20] or recently the power watershed [14]. A sec-

ond category groups techniques based on spectral graph the-

ory [12]. They have been successfully used for image filter-

ing [24], image segmentation [42], data clustering [30], or

network communities extraction in complex networks [27],

and so on.

There has been also recently much interest in transpos-

ing signal processing tools used in image and signal process-

2 Xavier Desquesnes et al.

ing on graphs. One can quote the generalization of wavelets

approach to graphs, with the work of Coifman et al. on dif-

fusion wavelets [13], Jansen on multiscale methods [31], or

recently Hammond et al. on spectral transform [23].

Similarly, there are recent works that aim to transpose

Partial Differential Equations (PDEs) on graphs. These wo-

rks exploit discrete calculus to perform such transcription

[25]. Discrete Calculus has been used in recent years to pro-

duce a reformulation of continuous problems onto a graph

is such a manner that the solution behaves analogously to

the continuous formulation. See [22] and references therein

for a complete overview on that subject with applications in

image processing and machine learning.

To transpose PDEs on graphs, one approach consists in

exploiting Partial difference Equations (PdEs) on graphs.

Conceptually, PdEs are methods that mimic PDEs on the

graphs general domain, by replacing differential operators

by difference operator on graphs. Historically, it was first

introduced in the seminal paper of Courant, Friedrichs and

Lewy [15]. Then, the study of PdEs has appeared to be a

subject on its own interest, dealing with existence and qual-

itative behavior problems [3,32,34]. Introduction of such

methods for image processing started with the work of Chan

et al. [10] who introduced the TV digital filter for image de-

noising, which is the discrete analogue of total variation on

unweighted graphs. Zhou has also used TV on graphs for

semi-supervised classification [51].

Following the line of research we developed in previous

works, we base the contributions of this paper on difference

operators on graphs [24]. The motivation is that these op-

erators allows to simply adapt continuous formulations to

graphs by replacing continuous operators by their discrete

adaptation. In particular, it allows most techniques based on

the p-Laplacian and gradients to be handled with such oper-

ators on graphs in a very straightforward, simple and similar

manner [17,47]. Such an approach enables an adaptation to

graphs that is not necessarily consistent with the continuous

formulation (see in [22]). This point is however not a prob-

lem for the paper and will be investigated in future works.

In previous works, using the PdEs formalism, we have

introduced non-local difference operators on graphs, and us-

ed the framework of PdEs to transcribe PDEs on graphs [4].

In particular, in [17], we have introduced a non-local dis-

crete regularization on graphs of arbitrary topologies as a

framework for image and data filtering and clustering. With

the same ideas, we have proposed PdE morphological pro-

cesses on graphs that are a transcription of continuous mor-

phological PDEs [45]. Recently, we have also adapted a time

-dependent version of the Eikonal equation with PdEs mor-

phological processes on graphs [46,47].

Eikonal equation background The Eikonal equation is a

special case of the following general continuous static

Hamilton-Jacobi equations:
{

H(x, f ,∇ f) = 0 x∈Ω ⊂ IRm

f (x) = ψ(x) x∈Γ ⊂Ω
, (1)

where ψ is a positive function defined on a domain Ω and

f (x) is the traveling time or distance from source Γ . Then,

the Eikonal equation can be expressed by using the follow-

ing Hamiltonian:

H(x, f ,∇ f) = ‖∇ f (x)‖−P(x), (2)

where P is a given potential function. This equation can be

linked to the level-set formulation for advancing fronts in-

troduced by Sethian [40]

∂φ(x, t)

∂ t
= F (x)‖∇φ(x, t)‖, (3)

where φ is the level-set representation of Γ , and F = 1/P.

The relation between such formulation and the Eikonal equ-

ation stems from the following change of variable : φ(x, t) =

t− f (x), under the condition that F is positive on the whole

domain Ω .

Solutions of static equation (2) are usually based on a

discretization of the Hamiltonian where the approximations

are performed by the Godunov methods [28] or with the

Lax-Friedrich schemes [40]. Numerous numerical schemes

have been proposed and investigated for solving the non-

linear system described by (2). Among the existing ones,

we can quote the following schemes. (i) An iterative scheme

has been proposed by [37] based on fixed point methods that

solve a quadratic equation. (ii) The fast sweeping methods

[50] that use Gauss-Seidel type of iterations to update the

distance function field. The key point of fast sweeping is to

update the points in a certain order. (iii) Tsitsiklis [48] was

the first to develop a Dijkstra like method and proposed an

optimal algorithm for solving the Eikonal equation. Based

on the same idea, Sethian [33,40] proposed the fast march-

ing methods.

Another approach to solve equation (2) is to consider a

time dependent version of the equation:

∂ f (x,t)
∂ t

=−‖∇ f (x)‖+P(x) x∈Ω ⊂ IRm

f (x, t) = ψ(x) x∈Γ ⊂ IRm

f (x,0) = ψ0(x) x∈Ω

. (4)

At steady state, the solution of the system (4) satisfies the Ei-

konal equation (2). Recently, we proposed in a conference

paper [46] an adaptation of the time dependent formula-

tion of the Eikonal equation over weighted graphs. Based on

PdE, the analogue of (4) on a weighted graph G = (V,E,w)
is

∂ f (u,t)
∂ t

=−‖(∇−w f)(u)‖p +P(u) u∈V

f (u, t)=ψ(u) u∈V0 ⊂V

f (u,0)=ψ0(u) u∈V

(5)

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 3

where V corresponds to the set of vertices of the graph and

V0 is the initial set of seed vertices. Operator ∇−w corresponds

to the weighted internal morphological gradient on graphs

(detailed in Sect. 2.2) and ‖.‖p denotes the Lp-norm. One

can see that formulation (5) needs numerous iterations due

to finite propagation speed and CFL conditions to converge

to the solution of the Eikonal equation.

Contributions This work generalizes and extends signific-

antly our previous works on the Eikonal equation. First, we

propose an adaptation of the stationary version of the Eiko-

nal equation over arbitrary weighted graphs. Based on PdEs,

our adaptation of (2) is given by this finite difference equ-

ation
{

F (u)‖(∇−w f)(u)‖p = 1 u ∈V

f (u) = 0 u ∈V0.
(6)

Explicits solutions of this equation are given for particu-

lar values of p ∈ {1,2,∞}. An efficient algorithm to ob-

tain such solutions, using the Fast Marching’s updating sch-

eme, is proposed, and proofs of existence and uniqueness are

also provided. This formulation generalizes front propaga-

tion methods on weighted graphs and recovers well known

schemes as Osher-Sethian discretization or Dijkstra shortest

path, for specific graphs and values of p.

Such an adaptation of the Eikonal equation on graphs en-

ables the transcriptions of efficient algorithms from the field

of image processing to a huge variety of discrete data that

can be represented by a weighted graph. Then, using this

adaptation, we also propose a new fast algorithm for propa-

gation and tracking of many concurrent fronts on a weighted

graph, the complexity of which is independent of the num-

ber of these fronts. Such an algorithm leads to several appli-

cations on weighted graphs such as semi-supervised image

segmentation or data clustering.

In these two previous contributions, we only considered

the case where the front is evolving in the outward nor-

mal direction (with the speed F defined non-negative every-

where), but it is also interesting to consider both inward and

outward directions and both positive and negative speeds.

In particular, in the case of semi-supervised clustering, such

inward and outward evolutions enables to minimize or over-

come errors due to wrong initialization. Finally, we gener-

alize the previous algorithm to the case where the speeds of

the different fronts can be either positive or negative, which

leads to a graph-based active contour model with many con-

tours. This generalization provides a complete tool for mul-

tiple fronts propagation on arbitrary graphs, and offers a

novel extension to the classical Fast Marching, when applied

to regular grid graphs.

Paper organization The rest of this paper is organized as

follows. In Section 2, we provide definitions and notations

used in this work. In Section 3, we present our new finite

difference equation on weighted graphs with proofs for ex-

istence and uniqueness, and explicit solutions for values of

p ∈ {1,2,∞} are also given. Section 4 introduces two effi-

cient algorithms for labels propagation, using the previous

equation and an adaptation of the Fast Marching algorithm.

Then, Section 5 presents several experiments which illus-

trate the behavior and efficiency of the proposed formula-

tions and algorithms, as geodesic distance, semi-supervised

image segmentation (with non-local configuration), active

contours or data clustering. Finally, Section 6 concludes this

paper.

2 Operators on graphs

As the core structure of our approach, in this section we

provide notations and basics on weighted graphs. We recall

our formulations of differences, morphological differences

and gradients on weighted graphs [4,17,45,46]. The latter

formulations constitute the basis of our proposed numerical

scheme for solving the Eikonal equation on weighted gra-

phs.

2.1 Notations

We consider the general situation where any discrete domain

can be viewed as a weighted graph. Let G=(V,E,w) be a

weighted graph composed of two finite sets: vertices V and

weighted edges E ⊆V ×V . An edge (u,v)∈ E connects two

adjacent (neighbor) vertices u and v . The neighborhood of

a vertex u is noted N(u) = {v ∈ V \ {u} : (u,v) ∈ E}. The

weight w(u,v) of an edge (u,v) can be defined with a func-

tion w :V×V → IR+ if (u,v)∈E, and w(u,v) = 0 otherwise.

For the sake of simplicity, w(u,v) will be denoted by wuv.

Graphs are assumed to be simple, connected and undirected

implying that function w is symmetric.

Let f : V → IR be a real-valued function that assigns a

real value f (u) to each vertex u ∈ V . We denote by H (V)

the Hilbert space of such functions and similarly by H (E),

the Hilbert space of functions that assign a real value to each

edge of E. These two spaces are endowed with the following

inner products:

〈

f ,h
〉

H (V)
= ∑

u∈V

f (u)h(u), (7)

with f ,h ∈H (V), and

〈

F,H
〉

H (E)
= ∑

u∈V
∑
v∈V

F(u,v)H(u,v), (8)

where F,G ∈H (E).

4 Xavier Desquesnes et al.

Given a function f ∈H (V), the integral of f is defined

as
∫

V

f = ∑
u∈V

f (u) (9)

and it’s Lp norm is given by

‖ f‖p =
(

∑
u∈V

| f (u)|p
)1/p

, 1 6 p < ∞

‖ f‖∞ = max
u∈V

(

| f (u)|
)

, p = ∞

(10)

Let A be a set of connected vertices with A ⊂ V such

that for all u∈A , there exists a vertex v∈A with (u,v)∈E.

We denote by ∂+A and ∂−A : the external and internal

boundary sets of A , respectively

∂+
A = {u ∈A

c : ∃v ∈A with (u,v) ∈ E} and

∂−A = {u ∈A : ∃v ∈A
c with (u,v) ∈ E}

(11)

where A c =V \A is the complement of A .

2.2 Operators and gradients on weighted graphs

The weighted gradient operator or weighted difference oper-

ator of a function f ∈H (V) , noted
→

∇w: H (V)→H (E),

respectively dw, is defined on an edge (u,v) ∈ E by

(→
∇w f

)

(u,v)
de f .
=

(

dw f
)

(u,v)
de f .
=

√

w(u,v)
(

f (v)− f (u)
)

.

(12)

The adjoint of the weighted gradient operator, noted
→

∇∗w f :

H (E)→H (V), is defined by :

〈

→
∇w f ,H

〉 de f .
=

〈

f ,
→

∇∗wH
〉

, (13)

with f ∈H (V) and H ∈H (E), and can be expressed as

(

→
∇∗wH

)

(u)
de f .
= ∑

v∼u

√

w(u,v)
(

H(v,u)−H(u,v)
)

. (14)

where v∼ u means that v is adjacent to u.

This adjoint is linear and measures the flow of a func-

tion in H (E) at each vertex of the graph. Similarly to the

continuous case, the divergence of a function F ∈H (E) is

defined by divwF =−
→

∇∗wF .

These two definitions of the weighted gradient operator

and it’s adjoint allow to define a family of first and second

order operators on graphs, as the p-Laplace operator. But in

this paper we only focus on the first order weighted gradient

operator.

Based on the weighted gradient operator definition, two

weighted directional gradient operators are defined. The

weighted directional external and internal gradient opera-

tors are defined as
→

∇±w : H (V)→H (E), with

(→
∇+

w f
)

(u,v)
de f .
=

√

w(u,v)
(

f (v)− f (u)
)+

(→
∇−w f

)

(u,v)
de f .
=

√

w(u,v)
(

f (v)− f (u)
)−

,

(15)

with the following notations:

(x)+ = max(x,0) and (x)− =−min(x,0).

The weighted gradient of a function f∈H (V) at ver-

tex u is defined as the vector of all weighted gradient with

respect to the set of edges (u,v) ∈ E

(∇w f)(u)
de f .
=

(→
∇w f (u,v)

)

v∈V
. (16)

In the sequel, weighted gradient will refer to this gradient

defined on vertices. Similarly, the weighted morphological

internal and external gradients at a vertex u are expressed

as

(∇+
w f)(u) =

(→
∇+

w f
)

(u,v)v∈V and

(∇−w f)(u) =
(→

∇−w f
)

(u,v)v∈V .

(17)

The corresponding Lp-norms of gradients (17) and (16) for

a vertex u are

‖(∇+
w f)(u)‖p =

[

∑
v∼u

w
p/2
uv |(D f (u))+|p

]1/p

,

‖(∇−w f)(u)‖p =
[

∑
v∼u

w
p/2
uv |(D f (u))−|p

]1/p

and

‖(∇w f)(u)‖p =
[

∑
v∼u

w
p/2
uv |D f (u)|p

]1/p

(18)

with 0 < p < ∞ and where D f (u) = (f (v)− f (u)). The re-

lation between these directional gradients norms was given

in [46] as

‖(∇w f)(u)‖p
p = ‖(∇+

w f)(u)‖p
p +‖(∇−w f)(u)‖p

p (19)

For the L∞-norm, we have

‖(∇+
w f)(u)‖∞ = max

v∼u

(√
wuv|(D f (u))+|

)

,

‖(∇−w f)(u)‖∞ = max
v∼u

(√
wuv|(D f (u))−|

)

and

‖(∇w f)(u)‖∞ = max
v∼u

(√
wuv|D f (u)|

)

,

with the following property :

‖(∇w f)(u)‖∞ = max(‖(∇+
w f)(u)‖∞,‖(∇−w f)(u)‖∞).

(20)

Properties of these gradients can be found in [45,46]. One

can note that the general definitions presented in this sec-

tion are defined on graphs of arbitrary topology. They can

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 5

be used to process any discrete regular or irregular data sets

that can be represented by a weighted graph. Moreover, local

and non-local settings are directly handled in these defini-

tions and both are expressed by the graph topology in terms

of neighborhood connectivity [17].

2.3 Morphological evolution equations

Time dependent Hamilton-Jacobi equation formulated in (4)

is linked with mathematical morphology processes and can

be viewed as morphological evolution equations. We have

shown in [44,45] that morphological gradients constitute

numerical schemes for solving time dependent morphologi-

cal dilation and erosion processes over graphs and therefore

solve the time dependent Eikonal equation.

Continuous scale morphology (see for instance in [7,38]

and references therein) defines flat dilations δ : IRm → IRm

and erosions ε : IRm→ IRm of a function f 0 : IRm→ IR by

structuring sets B={x : ‖x‖p≤1}, with the general PDEs

∂t f =+‖∇ f‖p and ∂t f =−‖∇ f‖p (21)

where f is a modified version of f 0 and with the initial con-

dition ∂t=0 f = f 0. With different values of p, one obtains

different structuring elements: a rhombus for p = ∞, a disc

with p = 2 and a square with p = 1.

We have proposed in [45] a graph-based versions of (21)

by using gradients defined in (17). Given a weighted graph

G = (V,E,w) and a function f ∈H (V), the analogues of

(21) on G are

∂t f (u) = +‖(∇+
w f)(u)‖p and ∂t f (u) =−‖(∇−w f)(u)‖p.

(22)

Intuitively, given a set of vertices A ⊂V and using external

and internal graph boundaries (11), equation of dilation over

A can be interpreted as a growth process that adds vertices

from ∂+A to A . By duality, erosion over A can be inter-

preted as a contraction process that removes vertices from

∂−A to A .

As mentioned in the introduction, one approach to solve

the Eikonal equation (1) is to consider a time dependent ver-

sion (4) of this equation. The time dependent equation can

be viewed as an erosion process regarding the minus sign

and a null potential function P. Then, using the correspond-

ing internal gradient
(

∇−w
)

involved in discrete PdEs based

erosion process, one can directly obtain the time-dependent

adaptation of the eikonal equation on graphs. Given a graph

G=(V,E,w) and a function f∈H (V), we have

∂ f (u,t)
∂ t

=−‖(∇−w f)(u)‖p +P(u) u∈V

f (u, t)=ψ(u) u∈V0 ⊂V

f (u,0)=ψ0(u) u∈V,

(23)

where V0 corresponds to the set of initial seed vertices. This

equation can be solved by steepest gradient descent method,

using the following iterative numerical scheme for all u∈V ,

with f n(u)≈ f (u,n∆ t):

f n+1(u) = f n(u)−∆ t
(

‖
(

∇−w f n
)

(u)‖p−P(u)
)

(24)

A complete and precise definition with numerical schemes

for p ∈ {1,2,∞} can be found in [46].

3 Adaptation of the Eikonal equation over weighted

graphs

As mentioned in the introduction, the time dependent ver-

sion of the Eikonal equation on weighted graphs needs nu-

merous iterations to converge to the solution and our ap-

proach, detailed in Section 2.3 is not adapted to large gra-

phs. Therefore, we propose a new adaptation of the Eikonal

equation and a new algorithm to solve such finite difference

equation (6), that overcomes these limitations.

We consider the Eikonal equation that describes the evo-

lution of a propagation front Γ ,

{

F (x)‖∇ f (x)‖= 1

f (x) = 0,x ∈ Γ ,
(25)

where f (x) is the arrival time of the front at x and F > 0.

The associated level-set function φ is defined as

∂φ(x, t)

∂ t
= F (x)‖∇φ(x, t)‖, (26)

and we know that φ(x, t) = t− f (x), then

∂ (t− f (x))

∂ t
= F (x)‖∇(t− f (x))‖= F (x)‖∇ f (x)‖= 1.

(27)

Transposed on a weighted graph G = (V,E,w) with func-

tions f ∈H (V) and F ∈H (V) and using morphological

equations defined in (22), the level-set formulation (26) can

be rewritten as

∂φ(u, t)

∂ t
= F (u)‖

(

∇wφ
)

(u, t)‖p, (28)

and can be expressed as a morphological process with the

following sum of dilation and erosion

∂φ(u, t)

∂ t
=
[

(

F (u)
)+‖

(

∇+
w φ

)

(u, t)‖p
p

+
(

F (u)
)−‖

(

∇−w φ
)

(u, t)‖p
p

]1/p

.

(29)

6 Xavier Desquesnes et al.

Only considering the case F > 0, and with φ(u, t) = t −
f (u), one has

∂φ(u, t)

∂ t
= F (u)‖

(

∇+
w (t− f)

)

(u)‖p

= F (u)‖
(

∇−w f
)

(u)‖p = 1.

(30)

Finally, with P = 1/F we obtain a discrete adaptation of

the Eikonal equation on weighted graph, which describes a

morphological erosion process, and defined as
{

‖
(

∇−w f
)

(u)‖p = P(u). ∀u ∈V

f (u) = 0 ∀u ∈V0

(31)

3.1 Existence and uniqueness of the solution

The proof of existence and uniqueness of equation (31) can

be established considering the equation
{

‖
(

∇−w f
)

(u)‖p = P(u) u ∈ A⊂V

f (u) = 0 u ∈ ∂A
(32)

which can be expressed as Su

(

u, f , f (v)v∼u

)

= 0 with

{

Su

(

u, f , [f (v)]v∼u

)

= ‖
(

∇−w f
)

(u)‖p−P(u) = 0 u ∈ A

Su

(

u, f , [f (v)]v∼u

)

= 0 u ∈ ∂A.

(33)

It can be easily shown that this scheme satisfies the follow-

ing properties for all f .

– H1. ∂Su[f]/∂ f (v)6 0,∀u 6= v

– H2. Su[f +M] = Su[f],∀M ∈ IR∀u
– H3. Su[λ f] = λSu[f]+ (λ −1)P(u),∀λ > 0,∀u
– H4. lim f (u)→+∞ Su(u, f , f (v)v∼u) =−P(u)
– H5. lim f (u)→−∞ Su(u, f , f (v)v∼u) = +∞

Uniqueness of the solution Equation (31) has a unique so-

lution.

Proof Let f and g be two distinct solutions of (31) such that

max
A

(f (u)−g(u))> 0. (34)

Then for a given λ > 1, we have

MH = max
A

(f (u)−λg(u))> 0. (35)

We denote u0 the u for which MH = f (u0)−λg(u0). Then

we can deduce that, with h(u) = MH +λg(u) :
{

f (u)6 h(u) ∀u ∈ A

f (u0) = h(u0)
(36)

This implies that

0 = Su0
[f]> Su0

[h] (due to H1)

= Su0
[λg] (due to H2)

= λSu0
[g]+ (λ −1)P(u0)> 0 (due to H3).

(37)

There is a contradiction unless f (u) = g(u).

Existence of solution The proof of existence for equation

(31)’s solution can be easily shown. We know that equation

Su(u, f , f (v)v∼u) is continuous. Due to properties H4 and

H5, we can deduce that ∃ −∞ < f (u) < +∞ such that

Su(u, f , f (v)v∼u) = 0.

3.2 Numerical schemes and algorithms

From (31) and using norms defined in (18) and (20) with the

property min(x,0) =−max(−x,0) , we obtain the following

equations for the Lp and L∞ norms.

– Case p ∈ {1,2}:
(

∑
v∼u

w
p/2
uv max

(

0, f (u)− f (v)
)p

)1/p

= P(u). (38)

With a simple transformation of variables and some con-

ventional notations, equation (38) can be rewritten as

n

∑
i=1

(

(x−ai)
+

hi

)p

= C
p, (39)

where x = f (u), hi =
√

1/wuv, n = card(N(u)),

a = { f (vi)|vi ∈ N(u) with i = 1, ...,n}, C = P(u).

– Case p = ∞ :

max
v∼u

(√
wuv max

(

0, f (u)− f (v)
))

= P(u). (40)

Using the same transformation of variables we obtain

max
i

(

(x−ai)
+

hi

)

= C . (41)

Local solutions (i.e., solution for a vertex, assuming the

others are held fixed) of equation (31) over a weighted graph

are given by (39) and (41). Both equations are clearly in-

dependent of the graph formulation, and can be applied to

weighted graphs of arbitrary topology.

For the case p = {1,2}, local solution x at a particular

vertex can be easily obtained with an iterative algorithm as

described in Algo. 1. The algorithm is based on the knowl-

edge that there exists a k with 1 6 k 6 n such that ak 6 x 6

ak+1, and x is the unique solution of the equation. Then, the

algorithm consists in sorting increasingly the values ai and

computing temporary solutions x̂m with the following equa-

tions (42) and (43) until the condition x̂m 6 am+1 is satisfied.

For p = 1, the temporary local solution is given by :

x̂m =

m

∑
i=1

ai
hi
+C

m

∑
i=1

1
hi

. (42)

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 7

Algorithm 1 x computation (Local solution)

Sort increasingly the ai, i = 1, ...,n
an+1← ∞

m← 1

x̂← ∞

while x̂m > am+1 and m 6 n−1 do

x̂m← solution of ∑
m
i=1

[

x−ai
hi

]p

= C p with p = 1 or 2

m← m+1

end while

x← x̂m

For p = 2, one has :

x̂m =

m

∑
i=1

ai

h2
i

+

√

m

∑
i=1

[

C 2

h2
i

− ∑
j>i

(ai−a j)2

h2
i h2

j

]

m

∑
i=1

1

h2
i

(43)

The numerical scheme for the L∞ norm is much simpler.

Considering equation (41), the local solution x for a partic-

ular node is directly given by

x =
n

min
i=1

(ai +hiC), (44)

where n corresponds to the number of neighbors. One can

remark that this equation is equivalent to Dijkstra like local

update equation.

Many solvers can be adapted to compute global solu-

tion (i.e., on the whole graph) as, for instance, the Fast Itera-

tive Method introduced by Jeong and Whitaker [49]. In this

paper, we prefer the Fast Marching method which has the

advantage to be monotonic. On an arbitrary graph, the Fast

Marching consists in an active list (A) of vertices for which

the solution is already known and fixed, and in a narrow

band (NB) of vertices which are not yet fixed and have at

least one neighbor in the active list. Vertices which are nei-

ther active or in the narrow band are said far away (FA). The

narrow band is built as a sorted heap, and at each iteration,

the first vertex is removed from the narrow band, added to

the active list, and it’s neighbors are updated if they are not

yet fixed and added to the narrow band if they are far away.

Each neighbors v are updated simultaneously by computing

new local solutions xv from the new value of f (u) (and us-

ing Algo.1) and updating f (v)← min
(

f (v),xv

)

under the

condition that the new local solution xv is inferior to previ-

ous local solution. This is iterated until the narrow band is

empty. More details on the initial Fast Marching algorithm

and a proof that the initial algorithm constructs a viable so-

lution are given in [39].

Accuracy and Complexity of the Algorithm Let G = (V,E,

w) be a weighted graph. The costs Cu,p to update a vertex

u (i.e., compute a new value of f (u)), according to Algo. 1

and equations (41), (42) and (43), are given by

Cu,1(u) = Du(u)
2 case p = 1,

Cu,2(u) = Du(u)
3 case p = 2,

Cu,∞(u) = Du(u) case p = ∞,

(45)

where the quantity Du(u) corresponds to the number of nei-

ghbors of u which are not far away.

In order to generalize the cost functions Cu,p, we can

consider that the previous quantity Du(u) is constant and

corresponds to the maximum degree of a vertex of V . Such

constant is defined as D = maxu∈V (card(N(u))). Thus, in

the sequel we will use the following constants to denote the

update costs.

Cu,1 = D2
>Cu,1(u)∀u ∈V,

Cu,2 = D3
>Cu,2(u)∀u ∈V,

Cu,∞ = D >Cu,∞(u)∀u ∈V.

(46)

Based on the previous constants, the activation costs Ca,p of

a vertex (i.e., the cost to change the state of a vertex from far

away to active, what implies to update every of it’s not yet

activated neighbors) can be defined as

Ca,p = DCu,p, p ∈ {1,2,∞}. (47)

while we know that N(u)6 D ∀u ∈V . And we have

Ca,1 = D3 case p = 1,

Ca,2 = D4 case p = 2,

Ca,∞ = D2 case p = ∞.

(48)

Finally, the total cost of the algorithm can be summarized as

the following complexity

O(Ca,pN log(N)) (49)

where N is the number of vertices and the log(N) factor cor-

responds to the managing cost of the heapsort. In practice,

processing such an algorithm on strongly connected graphs

is very rare, and in the most cases we have Ca,p≪ N.

3.3 Grid graph example

In this section, we show that with an adapted graph topology

and an appropriated weight function, the proposed formula-

tion recovers the well known Osher-Sethian scheme that has

been proposed in literature to solve the Eikonal equation.

Let G = (V,E,w) be a weighted graph. In the case where

p = 2, we have the following scheme

√

∑
v∼u

wuv max
(

0, f (u)− f (v)
)2

= P(u). (50)

8 Xavier Desquesnes et al.

If the graph represents a m-dimensional grid in IRm, this

numerical scheme recovers the Osher-Sethian discretization

models on a m-dimensional grid.

Let u be a given vertex of V , that defines a vector of m-

dimensional spatial such that u = (i1h1, ..., imhm) where the

h j represent the grid spacing and i j ∈ IN. The neighborhood

of u can then be defined as N(u) = {v|v = u±h je j with j ∈
1, ...,m} where e j = (qk)k=1,...,m is a vector of IRm such as

qk = 1 if j = k and qk = 0 otherwise. Finally, with the nota-

tions

D+
j f (u) = (f (u+h je j)− f (u))/h j,

D−j f (u) = (f (u)− f (u−h je j))/h j

(51)

and with wuv j
= 1/h j for all v j ∈N(u), (43) can be rewritten

as
√

m

∑
j=1

max
(

0,D−j f (u)
)2

+min
(

0,D+
j f (u)

)2
= P(u) (52)

since min(0,a− b)2 = max(0,b− a)2. This equation (52)

corresponds to the Osher-Sethian Hamiltonian discretization

scheme on a m-dimensional grid, and can be solved by the

initial Fast Marching algorithm [39].

4 A new class of fast algorithms for semi-supervised

graph clustering

In Section 3, we have introduced a new finite difference equ-

ation (31) which is an adaptation of the Eikonal equation

over weighted graph, and proposed an efficient algorithm

based on the Fast Marching method to solve such an equ-

ation. In this section, we propose to extend the previous al-

gorithm so as to define a new class of fast algorithms for dif-

fusion processes, that enable the simultaneous propagation

of many concurrent labels on a weighted graph. Efficient

algorithms for concurrent label propagation on a weighted

graph have a great interest for graph partitioning and have

led to numerous applications in semi-supervised image seg-

mentation and data clustering. We will first present the al-

gorithm when the speed is always non-negative (F : V →
[0,+∞]), then its extension to the case where the speed can

be either positive or negative (F : V → [−∞,+∞]).

4.1 Label propagation with non-negative speed

Given a graph G = (V,E,w), let L = {l1, .., ln} be a set of

labels and S0 = S0
1 ∪ ...∪ S0

n be the set of vertices initially

marked by a label, where S0
i is the set of vertices initially

marked by li. We call S0
i the seed of li.

The objective of label propagation for graph clustering

is to mark each vertex u of V with a label li, under the con-

dition that u is closer to at least one vertex of S0
i than other

vertices of S0 (according to the topology of G, the weight

function w and a speed function Fli : V → IR, li ∈ L), so as

to obtain a partition of the graph in n consistent clusters. The

propagation of each label li is driven by a front Γi, initialized

as the boundary of S0
i , and the final partition Si is given by

the set of vertices reached by Γi until it is stopped by another

front or the boundary of the domain.

Algorithm 2 Labels propagation with non-negative speed

0. List of variables

S0 : the set of seed vertices.

A : the set of active vertices.

NB : the set of vertices in the narrow band

FA : the set of vertices said as far away

lab : the label indicator function

1. Initialization:

lab(u) = Initial label of u.

f (u) = 0 ∀ u ∈ S0 ; f (u) = +∞ ∀ u ∈ V \S0

s(u) = +∞ ∀ u ∈ V \S0

A = S0 ; NB = {u | ∃ v ∈ A and v ∈ N(u)}
FA =V \A∪NB

2. Process:

while FA 6= /0 do

u← first element of NB

remove u from NB and add u in A.

for all v ∈ N(u)∩A do

compute local solution t← f (v)
if t < f (v) then

f (v) = t

if v ∈ FA then

remove v from FA and add v in NB.

else

update position of v in NB

end if

if f (u)/wuv < s(v) then

s(v) = f (u)/wuv

lab(v) = lab(u)
end if

end if

end for

end while

In practice, the propagation is performed in the same

time than the computation of the arrival-time (given by res-

olution of (31)): each time a vertex u is reached by a front,

the label of the front is propagated to u. The proximity con-

dition is respected while in the case of several front propaga-

tion, the front that arrives at a vertex is necessarily the front

coming from the nearest source of that vertex (according to

weight and speed functions). This is a consequence of the

Fast Marching algorithm which activates vertices from the

smallest to the greatest distance (or arrival-time). Indeed, a

vertex u is considered reached by a front when it is activated

by the algorithm, and the propagated label comes necessar-

ily from it’s neighbor v which is already activated and such

that

s(u) =
f (v)

wuv

= min
z∼u

(

f (z)

wuz

)

. (53)

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 9

The weight 1/w is used to penalize neighbors which are

close to a source but have very weak link with u. The whole

algorithm for label propagation on weighted graphs is given

in Algo. 2.

Remark 1 In the case where several neighbors have the sa-

me contribution and where these neighbors have different

labels, several labels could be affected to node u. But, as

this situation is very rare and happens only where fronts col-

lapse, we choose, in this work, to label the vertex with only

one arbitrary label from the list. This choice is application

dependent and does not act as a rule.

Remark 2 Due to the multitude of fronts, we have to define

one speed per front and the speed of a front Γi at a vertex

u is given by Fli(u). Consequently, each time a node u is

activated, it’s neighbors v such that v /∈ A are updated by :

‖(∇−w f)(v)‖p = Pli(v), (54)

where li is the label of u and Pli(v) = 1/Fli(v).

One can remark that the algorithm complexity does not de-

pend on the number of labels (the complexity is the same

than for the classical Fast Marching algorithm described in

Section 3). Then, this algorithm opens the way to a new

class of fast algorithms for semi-supervised graph cluster-

ing, which allows to cluster data or segment images in many

partitions, without loss of efficiency.

As noticed in Section 3, the label propagation is per-

formed with a speed F which is always non-negative. In

the following section, we propose an adaptive version of the

algorithm that can consider a front evolution (and then label

propagation) with positive or negative speed.

4.2 Label propagation without restrictions on speed sign

The case where the front’s speeds can be either positive or

negative is very interesting because it enables the labels to

be propagated when the speed is positive and removed when

the speed is negative, This also enables the tracking of mul-

tiple fronts subjected to changing sign speeds.

In the continuous case, Carlini has proposed an approach

for tracking an hypersurface with non always positive veloc-

ity, called Generalized Fast Marching Method (GFMM) [9].

Let Γ be a front evolving on a continuous domain noted

Ω , an represented by a characteristic discontinuous function

θ(x, t) defined as
{

θt(x, t) = F (x, t)|∇(θ(x, t)|
θ(x,0) = 1Ω0

−1Ω c
0

(55)

where F (x, t) is a changing-sign speed and 1Ω0
− 1Ω c

0
is

equal to 1 on Ω0 and −1 on its complementary. The posi-

tion of the front Γ is then given by the discontinuities of

Fig. 1 Label propagation with changing-sign speed. The first graph is

a 4-adjacency grid graph, and the second a non-Cartesian graph. Ver-

tices inside the purple line represent S0
i . The speed is positive on the

left side and negative on the right side. Green points and red points

represent vertices in initial configuration of positive front Γ +
i , respec-

tively vertices in initial configuration of negative front Γ−i . Blue points

represent vertices in the narrow band from the front Γ +
i (surrounded in

green) and from the front Γ−i (surrounded in red). (Color online).

function θ and the time evolution is obtained by solving the

stationary Eikonal equation (25).

Then, the main idea of the Generalized Fast Marching

Method is to split the front in two fronts: Γ t
+ = ∂{x|θ(x, t)>

0} and Γ t
− = ∂{x|θ(x, t)< 0} and perform two Fast March-

ing along two narrow bands (NBt
+ = Γ t

+ ∩{x,F (x, t) < 0}
and NBt

− = Γ t
− ∩{x,F (x, t) > 0}), with a modified version

of (55). Interested readers can refer to [9] for a detailed pre-

sentation.

Then, we propose an extension of such an approach for

front tracking on weighted graphs, along with a general-

ization of the previous algorithm (Algo. 2) with positive

and negative speeds. This can be done by representing each

10 Xavier Desquesnes et al.

front Γi by two fronts Γ +
i and Γ−i that describe the part of

front Γi subjected to a positive speed and respectively nega-

tive speed. Then, the propagation of a label li is performed

through two evolving fronts: Γ +
i which describes the growth

of the set Si (where the speed Fli is positive) and Γ−i which

describes the decay of the set Si (where the speed Fli is neg-

ative). We have Γi = Γ +
i ∪Γ−i .

On the first hand, the front Γ +
i is initialized by the set

{u|u ∈ ∂−S0
i and Fli(u) > 0}. In other words, this corre-

sponds to the set of vertices of S0
i which lies in the inner nar-

row band of S0
i and where the speed Fli of the front is pos-

itive. Neighbors of the front are added to the narrow band

under an additional condition: as the speed of the front has

to be positive at their position. This additional condition can

be easily justified since the front can’t grow where its speed

is negative.

On the other hand, the front Γ−i is initialized by the set

{u|u ∈ ∂+S0
i and Fli(u) < 0}. Neighbors are added to the

narrow band under the condition than the speed Fli is neg-

ative. Because this front describes the decay of Si, each time

a vertex is reached by Γ−i , the vertex is unmarked instead of

being marked by li.

Finally, in order to keep the distance (or arrival time) al-

ways positive, the signed version of the speed is replaced by

it’s modulus and the potential is given by Pli(u)= 1/|Fli(u)|.
Such an approach of label propagation with changing-

sign speed for two fronts is illustrated in Fig. 1 and Fig. 2.

The entire process is summarized in Algo. 3

1 2 3

4 5 6

Fig. 2 Illustration of label propagation with changing-sign speed, with

a toy example. The set Si is represented in blue. The inner narrow band

which represents the position of front Γ +
i is superimposed in green, and

the outer narrow band which represents the front Γ−i is superimposed

in red. The six images show different steps of the evolution of the set

Si and both two fronts, with the speed Fli which is positive on the gray

background and negative on the white background. (Color online).

Remark 3 In the case where p = ∞, and according to equ-

ation (44), the arrival-time of a vertex is computed with the

contribution of exactly one edge. Geometrically, this means

Algorithm 3 Labels propagation with changing-sign speed

0. List of variables:

S0 : the set of seed vertices

A : the set of active vertices.

NB : the set of vertices in the narrow band

FA : the set of vertices said as far away

lab : the label indicator function

∂+S0
i : outer boundary of the set of seeds Si

∂−S0
i : inner boundary of the set of seeds Si

Fli : speed function associated to label li.

1. Initialization:
A = {u | u ∈ ∂+S0

i and Fli (u) < 0}
∪ {u | u ∈ ∂−S0

i and Fli (u) > 0}
NB = {u | ∃ v ∈ A∩N(u) and Fli (v)×Fli (u) > 0}
FA =V \ (A ∪ NB)
f (u) = 0; lab(u) = li ∀ u ∈ A

f (u) = min(1/wuv), v ∈ A∩N(u)
lab(u) = li; s(u) = f (u) ∀ u ∈ NB

f (u) = +∞; lab(u) = 0; s(u) = +∞ ∀ u ∈ FA

2. Process:

while FA 6= /0 do

u← first element of NB

remove u from NB and add u in A.

for all v ∈ N(u)∩A and Fli (v)×Fli (u) > 0 do

compute local solution t← f (v)
if t < f (v) then

f (v) = t

if v ∈ FA then

remove v from FA and add v in NB.

else

update position of v in NB

end if

if f (u)/wuv < s(v) then

s(v) = f (u)/wuv

lab(v) = lab(u)
end if

end if

end for

end while

that the fronts propagation follows the edges (one can see

edges as pipes in which the fronts evolve), and the front that

reaches a particular vertex comes from exactly one of its

neighbors. The label assignment is then automatically de-

duced.

On the contrary, in the case where p = {1,2} and ac-

cording to equations (42), (43), the arrival-time of a vertex

is computed with the contribution of several edges. Thus,

only considering the graph structure, the front propagation

is interpreted as coming from several edges. In practice, we

consider that the front comes from the edge with the high-

est contribution, and labels are propagated in this way. If we

consider a sufficiently higher-dimensional domain in which

the graph is embedded (as it is the case for images, meshes

or manifolds), the front is coming between all the involved

edges.

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 11

5 Experiments and Applications

5.1 Graph construction

There exists several popular methods that transform a set of

unorganized discrete data into a neighborhood graph. Con-

sidering a set of vertices V such that functions of H (V)

represent the data, the construction of such a graph con-

sists in modeling the neighborhood relationships between

the data through the definition of a set of edges E, using a

pairwise distance measure µ : V ×V → IR+. In the general

case (where data are unorganized) one can quote:

– ε-neighborhood graphs where two data vi,v j ∈ V are

connected by an edge of E if µ(vi,v j)6 ε , with ε > 0.

– k-nearest neighbor graphs (k-NNG) where each vertex

vi is connected with it’s k-nearest neighbors according to

µ . Such construction implies to build a directed graph, as

the neighborhood relationship is not symmetric. Never-

theless, an undirected graph can be obtained while add-

ing an edge between two nodes vi and v j if vi is among

the k-nearest neighbors of v j or if v j is among the k-

nearest neighbors of vi.

In the case of structured data (i.e., images or meshes):

– Grid graphs which are the natural structure to describe

an image with a graph. Each pixel is connected by an

edge to its adjacent pixels.

– Region adjacency graphs (RAG), initially designed for

images where vertices correspond to image regions and

the set of edges is obtained by considering an adjacency

distance. A RAG can be built for any structured data

represented by a graph, where a region Ri is defined

as a set of connected vertices such that
⋃

Ri = V and
⋂

Ri = /0. Two regions Ri,R j are adjacent if ∃ vi ∈ Ri and

v j ∈ R j | vi ∼ v j.

In both cases, weights are computed according to a measure

of similarity g : E→ IR+, which satisfies:

w(u,v) =

{

g(u,v) if (u,v) ∈ E

0 otherwise
(56)

The similarity is usually based on a pairwise distance mea-

sure between data features, where each vertex u ∈ V is rep-

resented by a feature vector Fu ⊂ IRm. For a given edge

(u,v) ∈ E and a distance measure µ : V ×V → IR+, we can

have

g0(u,v) = 1,

g1(u,v) = (µ(Fu,Fv)+ ε)−1 with ε > 0,ε → 0,

g2(u,v) = exp(−µ(Fu,Fv)/σ2) with σ > 0,

(57)

where σ depends on the variation of the function µ over

the graph and controls the similarity scale. Several choices

can be considered for the expression of the feature vectors,

depending on the nature of the features to be used for the

graph processing. In the context of image processing, one

can quote the simplest grayscale or color feature vector Fu,

or the patch feature vector Fτ
u =

⋃

v∈W τ (u) Fv (i.e, the set

of values Fv where v is in a square window W τ(u) of size

(2τ +1)× (2τ +1) centered at a vertex pixel u), in order to

incorporate non-local features.

5.2 Weighted geodesic distances

Original

p = 1 p = 2 p = ∞

w
1

w
2

w
3

Partition RAG Distance

Fig. 3 Adaptive weighted distance computation with different p val-

ues, weight functions w and graph topologies G. Results represent

color distance maps with iso-level sets. At top: original image. First,

second and third columns: results with p=2,1 and ∞. First row, the

weight w1 is constant. Second row, the weight w2 is designed to penal-

ize vertical diffusion. Third row, the weight w3 holds original image

informations. First rows, the graph is built on the whole image. On the

last, the distance is computed on a Region Adjacency Graph (RAG)

from a partition of the original image.

12 Xavier Desquesnes et al.

In this section, we show the adaptivity of our framework

and illustrate the behavior of proposed numerical schemes

to compute weighted geodesic distances.

Figure 3 presents the application of the schemes formu-

lated by (39) and (41). Results are obtained with different

graph topologies and weight functions. They are all illus-

trated with color distance maps where iso-levels are super-

imposed in white. The potential function P is constant and

equal to 1 and the propagation is performed for a unique la-

bel which initial seed is located either at the top left corner

of the original image or at the center. The original image is a

256×256 grayscale image. First rows show results obtained

with a weighted 4-adjacency grid graph and different weight

functions w1, w2 and w3. The first weight function (w1 = 1)

is a constant weight function. Using such weight function

and in the case where p = 2 we obtain the same result as

using the initial Fast Marching algorithm [39], what veri-

fies that in such configuration our formulation recovers the

Osher-Sethian scheme. Similarly, in the case where p = ∞,

our algorithm is equivalent to a Dijkstra algorithm. The sec-

ond weight function is designed to favor horizontal diffu-

sion to vertical diffusion by penalizing the weights of verti-

cal edges and given by

w2(u,v) =

{

1 if vx = ux

0.25 if vy = uy.
(58)

In that latter case, the seed is placed at the center of

the image. The third weight function (w3 = exp(−d2/σ2))

is designed to hold the similarity between each connected

pixel (based on pixel intensity). Shape information is natu-

rally captured by the weights that stop the front evolution at

the boundaries. Clearly, in this case, one can obtain a seg-

mentation of the different shapes simply by thresholding the

obtained distance map. We provide results for different val-

ues of p = 1, p = 2 and p = ∞ at respectively first, second

and third column.

The last row illustrates distance computation on a Region

Adjacency Graph (RAG), built from the original image. The

first column shows the partition. Second one shows the as-

sociated graph where each node represents a region of the

RAG and two nodes are linked if their regions are adja-

cent. Finally, the third column presents the distance map

obtained from the top-left region. In that case, the weight

function holds the similarity between two adjacent regions

in the sense of mean intensity of each region, and the dis-

tance was computed with p = ∞.

Figure 4 presents illustrations of geodesic distances

computed on an irregular 3d mesh and an irregular 2d graph

with constant speed/potential. The two graphs are said irreg-

ular, because each vertex has a variable number of edges. In

these cases, our results does not necessarily coincide with

solutions of the Eikonal equation via Fast Marching algo-

rithms. Indeed, the finite difference equation (31) used to

compute these geodesics is not the Eikonal equation (but is

adapted from) and only consider values of functions defined

on graph vertices. There exists some algorithms, using ge-

ometric informations and local solvers designed for these

particular cases, which better approximate the solution of

the Eikonal equation on triangulated domains, as the Fast

Marching algorithm for triangulated domains proposed by

Kimmel [26], or Fast Sweeping on triangulated meshes by

Qian [35].

In the following section, we will present the accuracy of

the proposed fast algorithm to compute graph partitions.

Seeds Distance map

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Fig. 4 First row: geodesic distance on a 3d mesh from two distinct

seeds with, at left the seeds, at right the rainbow distance map where

red means near and blue means far. Second row: geodesic distance on

an irregular graph in IR2 with one seed.

5.3 Graph partitioning

In this Section, we present the accuracy of the proposed al-

gorithm (Algo. 2) for graph partitioning using a distance

function (i.e. a metric), with some examples of data simplifi-

cation. The use of a distance function for graph partitioning

is not new, and we recommend interested readers to refer to

[1,2,18] an references therein for a more complete review

on this topic.

First, we recall a definition of metric-based graph par-

tition. Let G = (V,E,w) be a weighted graph and CG(u,v)

be the set of paths connecting two vertices u,v ∈ V . A path

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 13

c(u,v) is a sequence of vertices (u1, ...,u j) such as u = u1

and v = u j with (ui,ui+1) ∈ E and i = 1, .., j−1.

Let ρ : E→ IR be a metric defined as

ρ(u,v) = min
ρ∈CG(u,v)

j−1

∑
i=1

(

f (ui+1)− f (ui)
)

. (59)

Given a set of K labels L = {li}i=1,...,K and a set of K seeds

S0 = {s0
i }i=1,...,K ⊆V (where s0

i is the seed of li), the energy

ρS : V → IRm induced by the metric ρ for all seed of S0 is

ρS(u) = min
si∈S

ρ(si,u)∀u ∈V. (60)

The region Ri of a label li, is the set of vertices which are

closer to s0
i than to any other seeds with respect to the metric

ρ . Ri can be defined as

Ri = {u ∈V : ρ(s0
i ,u)6 ρ(s0

j ,u),∀ j = 1, ...,K.}, (61)

A partition of G, for a given set of labels (with seeds S0) and

a metric ρ , is finally the set R(L,ρ) = {Ri,∀li ∈ L}. For a

graph G, to find it’s partition corresponds to seek a minimal

cost path over G, and can be easily computed with a simple

Dijkstra like algorithm.

This general formulation of graph partitioning according

to a metric can be easily linked with our definition of label

propagation for graph clustering (see Sec. 4.1). Indeed, such

a partition can be processed using the new finite difference

equation (31) and the new class of algorithms proposed in

Algo. 2 or Algo. 3, since we know that the label propagated

at each vertex u ∈V is the label which seed is the nearest of

u (see Sec. 4 for more details). Given a vertex u ∈ V with a

label li, we have the following relation

f (u) = ρS(u) = ρ(u,s0
i) = min

s0
j∈S0

(

ρ(u,s0
j)
)

. (62)

Moreover, graph partitioning is intrinsic to our algorithm,

because of the label propagation according to the distance

measure (or arrival time), which naturally cluster the graph.

The resulting partition corresponds to a generalized Voronoı̈

diagram. In the next paragraph, we present a methodology to

compute graph partition using our equations and algorithms,

we call supervertices.

From Super Pixels to Super Vertices. Initially developed by

Ren and Malik [36], superpixels are an efficient way to re-

duce image complexity by grouping pixels in a region map

while preserving contours. With TurboPixels [29], Levin-

shtein et al. have proposed an implementation of superpixels

in which an image partition is obtained by dilating a reg-

ular grid of seeds so as to adapt to local image structure,

where the dilation is performed using a level-set approach.

In this paper, we propose to extend such approach of image

Seeds Distance Supervertices

Fig. 5 Supervertices on meshes. Graphs used in this example are faces

graphs, where each face of meshes is represented by a vertex and linked

by an edge to any adjacent face. In both cases, the weight function is

given by f = 1 and P = 1. First column presents initial meshes with

superimposed random seeds. Second column shows the distance maps

computed where red means near a seed and purple means far from a

seed. Finally, last column shows the resulting partition in super ver-

tices.

simplification to weighted graphs, using our fast algorithm

for multilabel propagation on graphs. Because this adap-

tation groups vertices instead of pixels, we name it super-

vertices. As TurboPixels, our approach uses a set of labels

whose seeds are placed on initial data, but seeds dilation be-

comes a label propagation which is controlled by our fast

algorithm instead of iterative evolving equations. Figure 5

presents two examples of supervertices on 3D meshes. A re-

view of some other mesh partitioning methods can be found

in [41] and references therein. In the case of image process-

ing, the process is very similar to superpixels: the simpli-

fication is performed from a regular grid of distinct labels

whose seeds position can be perturbed in the direction of the

descending image gradient to avoid placing seeds close to

string boundaries. This is illustrated in Fig. 6 on two images

from the Berkeley Database1. Such partition can be easily

transformed in a Region Adjacency Graph (RAG), which

can be used as a simplified version of the initial image that

preserves texture information and strong boundaries. Then,

it becomes very interesting to perform any graph-based al-

gorithm on such a reduced version of the image. This is

illustrated in Section 5.4.4 with active contour and semi-

supervised image segmentation using RAG.

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

14 Xavier Desquesnes et al.

Supervertices partition of images

Fig. 6 Image partition with supervertices. Both images were parti-

tioned using a regular grid of seeds (perturbed according to the image

gradient). See text for details.

5.4 Semi-Supervised Image segmentation and Data

Clustering

In this Section, we present the behavior and efficiency of our

algorithm for semi-supervised image segmentation and data

clustering, using graph representation of these data. First we

give qualitative and quantitative comparison with a recent

and efficient graph-based approach for semi-supervised im-

age segmentation. Then, we illustrate the algorithm behavior

with local or non-local configurations and with non-negative

speeds or either positive or negative speeds, through several

examples involving different kinds of data.

In the case of image semi-supervised segmentation,

graph-based approaches have became very popular in recent

years. Many graph-based algorithms for image segmenta-

tion have been proposed, such as graph cuts [5], random

walk [20], shortest-path, watershed or frameworks that unify

some of the previous methods (as powerwatershed) [14,43].

Recently, these algorithms were all placed into a common

framework [14] that allows them to be seen as special cases

of a single general semi-supervised algorithms, and leads

to the following general formulation: Given a graph G =

(V,E,w), the general algorithm consists in finding the func-

tion f which minimizes the following energy function:

Ep,q(f) = ∑
u∼v∈E

wp
uv| f (u)− f (v)|q (63)

where f represents the target configuration. Using such a

formulation in the case of two classes A and B such that

VA ∪VB = V and VA ∩VB = /0, the graph clustering can be

performed as follow:

1. The first step consists in finding an optimum f for (63),

which is obtained by solving the equation

f (A) = 1

f (B) = 0

f = argmin f Ep,q(f)

(64)

Such formulation can be interpreted using PdEs as

argmin∑‖(∇w f)(u)‖ with w depending on p and q, and

A and B represents the internal Dirichlet boundary con-

dition.

2. Finally, the segmentation is performed via a threshold

and the labeling function L : V →{1,0} is given by

L(u) =

{

0 if f (u)< 1/2

1 if f (u)> 1/2
(65)

In the case of more than two classes, the method needs to

find as many optimum fi as distinct labels, where the shape

is given by the set of vertices of the label and the background

by the set of vertices of all other labels. Then, the labeling

function is given by:

L(u) = argmax
i

fi(u) (66)

Another approach [2,18] to perform a graph clustering con-

sists in computing a graph partition from the set of user’s

seeds and a metric, as it is described in the previous Section.

In this paper, we consider this approach which can be easily

performed using Algo. 2 and Algo. 3.

5.4.1 Comparison with power watershed

In this paragraph, we propose qualitative and quantitative

comparisons between our method and the recent power wa-

tershed [14] which is one of the most efficient methods pro-

posed in the previously cited framework. Results for the

power watershed are obtained using the source code from

Couprie’s website2

Figure 7 presents a qualitative comparison between the

two algorithms for semi-supervised image segmentation wi-

th two labels (shape and background). The comparison is

performed on images from the Microsoft Grabcut database3.

2 http://www.esiee.fr/ coupriec/
3 http://research.microsoft.com/en-us/um/cambridge/projects/

visionimagevideoediting/segmentation/grabcut.htm

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 15

The initial set of seeds is replaced by an eroded version in

order to penalize both algorithms (as all propagation algo-

rithms are very efficient when desired boundaries and seeds

are very close). Results are presented for values of p ∈ {1,
2,∞} and the power watershed (given by (63) with p = 2,

q= 2). The mean computation time is given for each method

(although it is quite difficult to compare runtime from two

different implementations) and one can remark that the run-

time difference between each p-norm is negligible, while the

case p= 2 outperform the three other methods (p= 1,∞ and

power watershed), with smoother results.

On the contrary to others methods, the proposed algo-

rithm complexity and computation time does not depend of

the number of labels (neither seeds). Indeed, whatever the

number of labels, each vertex is activated exactly once by

the algorithm (and we recall that the arrival time and the

label of each vertex are fixed when the vertex is activated,

see Sec.4.1). This is illustrated on Fig. 8, which presents the

runtime variation of both methods, in function of an increas-

ing number of labels. The labels propagation is performed

on a cytological slide photography (size 1280 × 2960) on

which we consider a label for the background and a label per

cell. For each experiment, an increasing number of label’s

seeds are placed on the image, and the non-seeded cells are

considered as background. Figure 8 presents the whole set

of labels and the slide segmentation with all labels for both

two methods. One can remark that where the power water-

shed runtime grows as the number of labels, the proposed

method runtime is relatively constant (the little increase is

implementation dependent and is not a consequence of the

algorithm).

Comparison in function of the number of distinct labels

E
la

p
se

d
 t

im
e
 (

se
co

n
d

s)

Number of labels

Fig. 9 Runtime variation in function of the number of labels. Variation

is given for the power watershed (in red) and the proposed approach (in

blue). The graph illustrates the runtime variation while the number of

labels increase from 20 to 240. See text for a comment. (Color online).

5.4.2 Non-local image segmentation

Our approach using graphs has the advantage to naturally

enable local and non-local configurations in the same formu-

lation. In this paragraph, we show the benefits of non-local

schemes as compared to local ones for semi-supervised im-

age segmentation, especially noisy images or images that

contain fine and repetitive structures. In order to hold non-

local configurations, the graph is construct as a k-grid graph,

(i.e a pixel u is linked to every pixels in a k×k window cen-

tered on u), and each pixel is associated with a patch feature

vector (where each vector can be seen as a patch of tex-

ture). Figure 10 presents several examples of textured im-

age segmentation. First column presents initial image and

seeds. Second column shows local results obtained with a

4-adjacency grid graph using color feature vectors. Finally,

the last column shows non-local results with a 11×11 win-

dow and patchs of 3× 3 . All results were computed with

a potential function P = 1 and p = 2. These results demon-

strate the benefits of non-local configurations especially for

textured images, where classical methods fail to found cor-

rectly the desired object. In non-local configuration cases,

the graph weights better capture fine and repetitive informa-

tion contained in the image.

5.4.3 Active contour

In this paragraph, we illustrate the behavior of our algorithm

to perform active contour on graphs using an adaptation of

the Chan and Vese model [11]. Although many recent ap-

proaches outperform this model [6,16,21], our choice lies

in that we are not interested in present a new active con-

tour model on graph, but only illustrate the adaptivity of our

finite difference equation and algorithms. Given a front Γ

represented by the level-set function φ , the Chan and Vese

active contours model (without regularization term) can be

summarized by the following PDE

∂φ(x, t)

∂ t
=
[

((Fx−µ1(t))
2− ((Fx−µ2(t))

2
]

‖∇φ(x, t)‖,
(67)

where Fx is the feature vector of x, µ1(t) and µ2(t) are the

mean outside the front Γ at time t, respectively the mean

inside. With F (x, t) = ((Fx− µ1(t))
2− ((Fx− µ2(t))

2 such

an equation (67) is equivalent to the level-set function de-

fined in (26), which is the continuous version of our finite

difference equation. Then, transposed on weighted graphs,

the active contours model for a front Γi can be written as

‖(∇−w f)(u)‖p = Pli(u, t), (68)

with Pli(u, t) = 1/Fli(u, t) and Fli(u, t) = ((Fu−µ1(t, li))
2

−(Fu− µ2(t, li))
2. Finally, the front evolution is performed

using Algo. 3 with the advantages given by our formulation

as the speed of the Fast Marching and the ability to perform

16 Xavier Desquesnes et al.

Seeds Power watershed Eikonal p = 1 Eikonal p = 2 Eikonal p = ∞

mean computation times: 0.281 s 0.540 s 0.528 s 0.504 s

mean computation times: 0.610 s 0.907 s 0.895 s 0.863 s

Fig. 7 Qualitative comparison between power watershed and the proposed approach, using two images from the grabcut database. See text for

more details.

Seeds Power watershed Eikonal p = 2

Fig. 8 Runtime variation in function of the number of labels. Variation is given for the power watershed (in red) and the proposed approach (in

blue). The sets of seeds for the maximum number of labels, and segmentation results for both methods are illustrated. See text for a comment.

(Color online).

several active contours evolution simultaneously. It is illus-

trated by Fig. 13, where different steps of the contours evo-

lutions are presented. The graph is a 4-adjacency grid graph,

and the 4 initial sets of labels (or in other words the initial

position of contours) were deliberately roughly placed, to il-

lustrate the behavior of the algorithm in such configuration.

Figure 11 presents another example which involves 9 dis-

tinct fronts/contours. Here again, the seeds are deliberately

roughly placed to illustrate the robustness of the method to

imprecise initialization

Remark 4 In Algo.3, in order to transcript the time depen-

dence of speed, the speeds Fli are periodically updated.

5.4.4 Region Adjacency Graph

Another advantage of our graph-based formulation is that

the proposed algorithm can be applied to any graph, and

therefore any graph representing images. To illustrate such

Initial labels Final Segmentation

Fig. 11 Another example of active contours on a natural image. The

evolution of the 9 contours is performed simultaneously without lost

of efficiency.

an adaptive behavior, we propose to use other image struc-

tures, such as regions maps, instead of pixels grids to build

the graph for image segmentation. In the following exam-

ples, we use two graphs. The first is a 4-adjacency grid graph

used to build an image partition in a supervertices lattice.

The obtained region map is then transformed in a second

graph, a Region adjacency Graph (RAG), on which the seg-

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 17

Seeds Local Non local + Patchs

Fig. 10 Semi-supervised image segmentation using the proposed algorithm. For each image, results are provided for two different graph topologies

and weight functions. The first column presents images to segment with superimposed initial labels (respectively 2 and 3). The second one shows

results for 4-adjacency grid graphs where each pixel is characterized by it’s color feature vector. Finally, third column shows results for a larger

neighborhood (each pixel u is linked with any pixel in a 11×11 window centered on u) and pixels are characterized by patchs of 3×3.

mentation algorithm is performed. Figure 14 illustrates non-

local semi-supervised image segmentation using a RAG. In

order to let the labels grow beyond local neighborhood, each

vertex neighborhood is extended by a k-nearest neighbor-

hood based on mean color value. The final graph is a RAG ∪
k-NNG. One can remark that every cells are extracted even

those without initial marker. Another example, presented in

Fig. 12, illustrates active contour on a RAG. Finally, using

region based graphs has the following advantages.

– Fast computation. By reducing the number of graph ver-

tices (approximately 98% of reduction in term of ver-

tices as compared to the pixel based graph), the comput-

ing time is reduced due to the reduced number of data to

consider.

– Non-local segmentation. The first example shows non-

local object segmentation, where only one object is ini-

tially marked and the others are found by our method

even if the objects are not spatially close or connected

– Minimal number of initial seeds. With an appropriate

graph structure, the segmentation requires a minimal

number of initial seeds.

5.4.5 Data clustering

Finally, this last experiment illustrates the adaptivity and be-

havior of the proposed algorithm for high-dimensional un-

organized data clustering. The clustering is performed sim-

ilarly to the non-local image segmentation case, using a set

of seeds and a weighted graph. The data consists in a set of

Active contours on RAG

(a)

(b) (c)

(d) (e)

Fig. 12 Active contours on a weighted RAG from one contour. (a)

The image partition the RAG is built on. (b,c,d) Different steps of the

contour evolution. Points represent vertices and white lines represent

edges. The contour is given by the red points and blue points represent

the vertices which lie inside the contour. (e) The final contour trans-

posed on initial image. (Color online).

500 cells extracted from a cytological slide. Each cell ci is

represented by a feature vector Fci
and the graph is a 7-NNG.

18 Xavier Desquesnes et al.

Initial Final

Fig. 13 An application of the proposed algorithm to active contours. Different steps of the simultaneous evolution of 4 contours on the 4-grid

graph representation of the given image. See text for details.

Seeds RAG Final segmentation

Fig. 14 Semi supervised non-local-region-based segmentation. First image: original image with two seeds. Second image: image partition with

region boundaries superimposed. Final image: final segmentation (performed on the RAG). See text for details.

Seeds Final clustering

Fig. 15 Unorganized real data clustering. The graph is a 7-nn graph built from a set of 500 cells, and each cell ci is represented by a feature vector

Fci
. At left, the graph with initial labels. At right, the final clustering.

Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing 19

Figure 15 presents the graph with 4 initial sets of labels, and

the final clustering.

6 Conclusion

In this paper, we have considered a new finite difference

equation which is an adaptation of the Eikonal equation and

defined on weighted graphs. We have shown that this equ-

ation has a unique solution and proposed numerical schemes

for its resolution with different Lp norms, with p∈{1,2,∞}.
Based on such an equation, we have proposed efficient al-

gorithms for multiple labels propagation on graphs of ar-

bitrary topology which enables numerous applications as

graph clustering, geodesic distance computation or front

tracking. This can be used on many domains such as im-

ages, meshes, data or any structure that can be represented

by a weighted graph.

References

1. Arbelaez, P. and Cohen, L.: A Metric Approach to Vector-Valued

Image Segmentation. Int. J. Comput. Vis. 69, 119–126 (2006)

2. Bai, X., Sapiro, G.: Geodesic matting: A framework for fast inter-

active image and video segmentation and matting. Int. J. Comput.

Vis. 82, 113–132 (2009)

3. Bensoussan, A., Menaldi, J.L.: Difference equations on weighted

graphs. Convex Anal. 12(1), 13–44 (2003)

4. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization

on weighted graphs for image and mesh filtering. In: Proc. SSVM,

pp. 128–139 (2007)

5. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal bound-

ary & region segmentation of objects in n-d images. In: Proc.

ICCV, vol. 1, pp. 105–112 (2001)

6. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral

solution to surface evolution pdes via geo-cuts. In: Proc.ECCV,

pp. 409–422 (2006)

7. Brockett, R.W., Maragos, P.: Evolution equations for continuous-

scale morphology. In: Proc. ICASSP, vol. 3, pp. 125–128 (1992)

8. Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie de-

noising. Int. J. Comput. Vis. 76, 123–139 (2008)

9. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence

of a generalized fast-marching method for an eikonal equation

with a velocity-changing sign. SIAM J. Numer. Anal. 46, 2920–

2952 (2008)

10. Chan, T.F., Osher, S., Shen, J.: The digital tv filter and nonlinear

denoising. IEEE Trans. Image Process. 10, 231–241 (2001)

11. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE

Trans. Image Process. 10(2), 266–277 (2001)

12. Chung, F.: Spectral graph theory. CBMS Regional Confs Series

Math. 92 1–212 (1997)

13. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput.

Harmon. Anal. 21(1), 53–94 (2006b)

14. Couprie, C., Grady, L., Najman, L., Talbot, H.:Power Watersheds:

A Unifying Graph-Based Optimization Framework IEEE Trans.

Pattern Anal. Mach. Intell. 7(33), 1384–1399 (2011)

15. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference

equations of mathematical physics. Math. Ann. 100, 32–74 (1928)

16. El Zehiry, N., Xu, S., Sahoo, P., Elmaghraby, A.: Graph cut opti-

mization for the mumford-shah model. In: Proc. VIIP, pp. 182–

187 (2007)

17. Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regu-

larization on weighted graphs: A framework for image and man-

ifold processing. IEEE Trans. Image Process. 17(7), 1047–1060

(2008)

18. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image forest-

ing transform: Theory, algorithms, and applications. IEEE Trans.

Pattern Anal. Mach. Intell. 26, 19–29 (2004)

19. Gilboa, G., Osher, S.: Nonlocal operators with applications to im-

age processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

20. Grady, L. J.: Random walks for image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)

21. Grady, L. J., Alvino, C.V.: The piecewise smooth mumford-shah

functional on an arbitrary graph. IEEE Trans.Image Proc. 18,

2547–2561 (2009)

22. Grady, L. J., Polimeni, J. R.: Discrete Calculus Applied Anal.

Graphs Comput. Sc (1999)

23. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on

graphs via spectral graph theory. Appl. Comput. Harmon. Anal.

30(2), 129–150 (2011)

24. Hein, M., Maier, M.: Manifold denoising. In: Proc. NIPS, pp.

561–568 (2006)

25. Hirani, A. N.: Discrete exterior calculus. Ph.D. thesis California

Ins. Tech. (2003)

26. Kimmel, R., Sethian, J.A.: Computing geodesic paths on mani-

folds. In: Proc. Natl. Acad. Sci., pp. 8431–8435 (1998)

20 Xavier Desquesnes et al.

27. Kurucz, M., Benczúr, A., Csalogány, K., Lukács, L.: Spectral clus-

tering in social networks. In: Advances in Web Mining and Web

Usage Analysis, vol. 5439, pp. 1–20 (2009)

28. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems.

Cambridge University Press (2002)

29. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S.,

Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows.

IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

30. von Luxburg, U.: A tutorial on spectral clustering. J. Stat. Comput.

17, 395–416 (2007)

31. M. H. Jansen, P.J.O.: Second Generation Wavelets and Applica-

tions. Springer (2005)

32. Neuberger, J.M.: Nonlinear elliptic partial difference equations on

graphs. Exp. Math. 15(1), 91–107 (2006)

33. Osher, S., Sethian, J.A.: Fronts propagating with curvature depen-

dent speed: Algorithms based on hamilton-jacobi formulations. J.

Comput. Phys. 79, 12–49 (1988)

34. Park, J.H., Chung, S.Y.: Positive solutions for discrete bound-

ary value problems involving the p-laplacian with potential terms.

Comput. Math. Appl. 61, 17–29 (2011)

35. Qian, J., Zhang, Y.T., Zhao, H.K.: Fast sweeping methods for ei-

konal equations on triangular meshes. SIAM J. Numer. Anal. 45,

83–107 (2007)

36. Ren, X., Malik, J.: Learning a classification model for segmenta-

tion. In: Proc. ICCV, pp. 10– (2003)

37. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-

from-shading. SIAM J. Numer. Anal. 3, 867–884 (1992)

38. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein,

A.M.: Implementing continuous-scale morphology via curve evo-

lution. Pattern Recognit. 26(9), 1363–1372 (1993)

39. Sethian, J.A.: A fast marching level set methods for monotonically

advancing fronts. Proc. Natl. Acad. Sci 41(2), 199–235 (1999)

40. Sethian, J.A.: Level Set Methods and Fast Marching Methods:

Evolving Interfaces in Computational Geometry, Fluid Mechan-

ics, Computer Vision and Materials Science. Cambridge Univer-

sity Press (1999)

41. Shamir, A.: A survey on Mesh Segmentation Techniques Comput.

Graph. Forum 27(6), 1539–1556 (2008)

42. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

43. Sinop, A.K., Grady, L.: A seeded image segmentation framework

unifying graph cuts and random walker which yields a new algo-

rithm. In: Proc. ICCV, pp. 1–8 (2007)

44. Ta, V.T., Elmoataz, A., Lézoray, O.: Partial difference equations

on graphs for mathematical morphology operators overs images

and manifolds. In: Proc. ICIP, pp. 801–804 (2008)

45. Ta, V.T., Elmoataz, A., Lézoray, O.: Partial difference equations

over graphs: Morphological processing of arbitrary discrete data.

In: Proc. ECCV, LNCS 5304, pp. 668–680 (2008)

46. Ta, V.T., Elmoataz, A., Lézoray, O.: Adaptation of eikonal equ-

ation over weighted graphs. In: Proc. SSVM, p. to appear (2009)

47. Ta, V.T., Elmoataz, A., Lézoray, O.: Nonlocal pdes-based mor-

phology on weighted graphs for image and data processing. IEEE

Trans. Image Process. 20(6), 1504–1516 (2011)

48. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajecto-

ries. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

49. Won-Ki, J., Ross T., W.: A fast iterative method for eikonal equa-

tions. J. Sci. Comput. 30(5), 2512–2534 (2008)

50. Zhao, H.: Fast sweeping method for eikonal equations. Math.

Comput. 74, 603–627 (2005)

51. Zhou, D., Schölkopf, B.: Discrete Regularization, chap. 3.13, pp.

221–232. Adaptive computation and machine learning (2006)

