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Non-Local Morphological PDEs and p-Laplacian

Equation on Graphs with applications in image

processing and machine learning
Abderrahim Elmoataz, Xavier Desquesnes, Olivier Lézoray

Abstract—In this paper, we introduce a new class of non-
local p-Laplacian operators that interpolate between non-local
Laplacian and infinity Laplacian. These operators are discrete
analogous of the game p-laplacian operators on Euclidean spaces,
and involve discrete morphological gradient on graphs. We
study the Dirichlet problem associated with the new p-Laplacian
equation and prove existence and uniqueness of it’s solution.
We also consider non-local diffusion on graphs involving these
operators. Finally, we propose to use these operators as a unified
framework for solution of many inverse problems in image
processing and machine learning.

Index Terms—p-Laplacian, PDEs-based morphology on
graphs, image processing, machine learning, Tug-of-war games.

I. INTRODUCTION

A. Motivations and Contributions

In the last decade, there has been an increasing interest

in local and non-local p-Laplacian on Euclidean domains

and graphs. Indeed, this operator plays an important role in

geometry and Partial Differential Equations. Many nonlinear

problems in physics, mechanics, image processing or com-

puter vision are formulated in equations that contain the p-

Laplacian. Non-local continuous version of the p-Laplacian

appear naturally in the study of many evolution equations as

well as in mathematical biology and image processing. For

theory and applications see the recent book [1] and reference

therein. On the other hand the discrete Laplacian or graph

Laplacian has been extensively used in machine learning for

clustering, dimension reduction [2]. The graph p-Laplacian,

generalization of the standard Laplacian has started to attract

attention from mathematical, machine learning, image and

manifolds processing community. One can quote the proof of

the the relationship between graph p-Laplacian and cheeger cut

[3], the p-Laplacian regularization for semi-supervised classifi-

cation [31], or the recent framework for nonlocal regularization

on graphs based on p-Laplacian that unify image, mesh and

manifold processing [4]. Meanwhile PDEs on graphs with

discrete p-Laplacian has been investigated as a subject on its

own interest dealing with existence and qualitative behavior

of the solution [24], [25].
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In this paper, we introduce a new class of p-Laplacian

operators involving discrete morphological gradients on

graphs. These operators interpolate between non-local

Laplacian and infinity Laplacian on graphs and are obtained

as the discretization on weighted graphs of the well known

normalized p-Laplacian or game p-laplacian. This adaptation,

involving discrete morphological gradients on graphs leads to

finite difference equations on graphs with variable coefficients.

The study of these equations, under the light of connexions

with corresponding continuous PDEs, is a subject of it’s own

interest. Then, we study the Dirichlet problem associated

with these equations and prove existence and uniqueness of

solutions. Recently, certain random tug-of-war games have

been used in connection with PDEs problems [5], [6], [7].

We then show that value functions of these games coincide

with the solution of these p-Laplacian equations. And finally,

we propose to use these operators as a framework for solving

many inverse problems in image processing and machine

learning.

So, our first motivation is mainly theoretic and concerns

the introduction of a new class of p-Laplacian operators on

graphs. The second one is more practical and is part of a

more general motivation to transpose and extend well-known

tools as a framework on weighted graphs.

Indeed, more and more contemporary applications involve

data in the form of functions defined on irregular and topolog-

ically complicated domains. Typical examples are data defined

on manifolds or irregularly-shaped domains, data defined on

network-like structures, or data defined as high dimensional

point clouds such as collections of features vectors. Such

data are not organized as familiar digital signals and images

sampled on regular lattices. However, they can be conveniently

represented as graphs where each vertex represents measured

data and each edge represents a relationship (connectivity or

certain affinities or interaction) between two vertices. Process-

ing and analyzing these types of data is a major challenge for

both image and machine learning communities. Hence, it is

very important to transfer to graphs and networks many of the

mathematical tools which were initially developed on usual

Euclidean spaces and proven to be efficient for many problems

and applications dealing with usual image and signal domains.
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B. Short Background on PDEs on graphs

Historically, the main tools for the study of graphs or

networks come from combinatorial and graph theory. In recent

years there has been an increasing interest in the investigation

of two major mathematical tools for signal and image analysis,

which are PDEs and wavelets, on graphs. For wavelets on

graphs, one quote the works of Coifman et al. [8] on diffu-

sion wavelets, Jansen [9] on multiscale methods, or recently

Hammond et al. [10] on spectral wavelets transforms. The

PDEs approach on graphs starts to raise interests in image

and manifold processing, it consists in the exploitation of

Partial difference Equations (PdEs), or related Discrete Vector

Calculus [11], [12], [13], [14]. Following our previous works,

in this paper we only consider PdEs.

Conceptually, PdEs are methods that mimic PDEs on

graphs, by replacing differential operators by difference oper-

ators on graphs. Historically, one can trace back use of PdEs

to the seminal paper by Courant, Friedrichs and Levy [15].

In their paper, the authors introduced the finite difference

method as a convenient way of dealing numerically with

PDEs. In recent papers, the study of PdEs has appeared to

be a subject on its own interest, dealing with existence and

qualitative behavior of the solutions [16], [17], [18], [19].

Many discretizations of PDEs on images or surfaces design

PdEs restricted to some particular and regular graphs (e.g., grid

graphs). For the use of PdEs on graphs of arbitrary topology,

with concrete applications in image or manifold processing as

well as machine learning, see [4], [14] and references therein.

Among these references, one can quote the digitization of the

total variation (TV) and the Rudin-Osher-Fatemi (ROF) model

of images [20] onto unweighted graphs [21], [22] for image

denoising. An extension of this model, that uses a normalized

p-Dirichlet energy on weighted graphs, is proposed in [23] in

the context of semi-supervised learning.

On the roots of these works, we have presented an ex-

tension of these models in the context of image, mesh and

manifold processing [24], [25], [4], by introducing a non-

local discrete regularization framework on weighted graphs

of arbitrary topology. In particular, it was shown that these

regularization processes lead to a family of discrete and semi-

discrete diffusion processes based on discrete p-Laplacian op-

erators. These processes, parametrized by the graph structure

(topology and geometry) and by the degree p of smoothness,

allow to perform several filtering tasks such as denoising

and simplification. Moreover, local and non-local image reg-

ularizations are formalized within the same framework, that

corresponds to the transcription of the local or non-local

continuous regularizations proposed in [26].

Remark: The term non-local, applied to our discrete opera-

tors, is related to the non-locality of data defined on Euclidean

domains (as images). Indeed, by graph construction, these

operators can mimic non-local operators defined on contin-

uous domain. Then, this term is used as a reference to the

continuous case [27] where it means that each element can

interact with every other elements in the domain (and not only

adjacent ones), and should not be confused with the one in

non-local filtering (that uses patches).

With the same idea, by introducing upwind discrete deriva-

tives and gradients, we proposed PdEs morphological pro-

cesses on graphs that are transcriptions of continuous mor-

phological PDES such as dilation, erosion, leveling or Eikonal

equations [28], [29], [30].

C. Paper Organization

The rest of the paper will be organized as follows. In

Section II, we provide definitions and notations used in this

work, and recall our previous works on p-Laplacian and PdEs-

based morphology on graphs. In Section III, we provide a

new interpretation of morphological operators as a family

of non-local digital averaging filters, and a new expression

of the infinity Laplacian. In Section IV, we present a new

family of p-Laplacian on graphs, as non-local normalized p-

Laplacian. Then, we study existence and uniqueness of the

Dirichlet problem associated with the p-Laplacian equation.

A link between Tug-of-War games and this new family is

also provided. Section V presents several applications to some

interpolation problems in image and high dimensional data.

Finally, Section VI concludes the paper.

II. DEFINITIONS AND PREVIOUS WORKS

In this Section, we present definitions and previous works

involved in this paper.

A. Partial difference Equations on graphs

1) Notations: Let us consider the general situation where

any discrete domain can be viewed as a weighted graph. A

weighted graph G = (V,E,w) consists in a finite set V of N
vertices and in a finite set E ⊆ V × V of edges. Let (u, v)
be the edge that connects vertices u and v. An undirected

graph is weighted if it is associated with a weight function

w : V ×V → [0, 1]. The weight function represents a similarity

measure between two vertices of the graph. According to

the weight function, the set of edges is defined as : E =
{(u, v)|w(u, v) 6= 0}. We use the notation u ∼ v to denote

two adjacent vertices. The degree of a vertex u is defined as

δw(u) =
∑

v∼u w(u, v). The neighborhood of a vertex u (i.e.,

the set of vertices adjacent to u) is denoted N(u). In this paper,

the considered graphs are connected, undirected, with no self-

loops neither multiple edges. Let H(V ) be the Hilbert space

of real valued functions on the vertices of the graph. Each

function f : V → IR of H(V ) assigns a real value f(u) to

each vertex u ∈ V . Similarly, let H(E) be the Hilbert space

of real valued functions defined on the edges of the graph.

These two spaces are endowed with following the inner prod-

ucts: 〈f, h〉H(V ) =
∑

u∈V f(u)g(u) with f, g ∈ H(V ), and

〈F,H〉H(E) =
∑

u∈V

∑

v∈V F (u, v)G(u, v) where F,G ∈
H(E).
Given a function f : V → IR, the integral of f is defined as

∫

V

f =
∑

u∈V

f(u)
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and its Lp norm is given by

‖f‖p =
(

∑

u∈V

|f(u)|p
)1/p

, 1 6 p < ∞

‖f‖∞ = max
u∈V

(

|f(u)|
)

, p = ∞

Let A be a set of connected vertices with A ⊂ V such that

for all u ∈ A, there exists a vertex v ∈ A with (u, v) ∈ E.

We denote by ∂A : the boundary set of A,

∂A = {u ∈ Ac : ∃v ∈ A with (u, v) ∈ E} (1)

where Ac = V \ A is the complement of A.

2) Differences and gradient operators: We recall several

definitions of difference operators on weighted graphs to

define derivatives and morphological operators on graphs.

More details on these operators can be found in [4], [28].

The non-local gradient or difference operator of a function

f ∈ H(V ), noted Gw : H(V ) → H(E), is defined on an edge

(u, v) ∈ E by:

(Gwf)(u, v)
def.
= γ (w(u, v)) (f(v)− f(u)) . (2)

where γ : IR+ → IR+ depends on the weight function (in the

sequel we denote γ(w(u, v)) by γuv). This gradient operator

is linear and antisymmetric.

The adjoint of the difference operator, noted G∗
w : H(E) →

H(V ), is a linear operator defined by 〈Gwf,H〉H(E) =
〈f,G∗

wH〉H(V ) for all f ∈ H(V ) and all H ∈ H(E). Using the

definitions of the difference and inner products in H(V ) and

H(E), the adjoint operator G∗
w, of a function H ∈ H(E), can

by expressed at a vertex u ∈ V by the following expression:

(G∗
wH)(u)

def.
=

∑

v∼u

γuv(H(v, u)−H(u, v)). (3)

The divergence operator, defined by Dw = −G∗
w, measures

the net outflow of a function of H(E) at each vertex of the

graph. Each function H ∈ H(E) has a null divergence over

the entire set of vertices. From previous definitions, it can

be easily shown that
∑

u∈V

∑

v∈V

Gwf(u, v) = 0, f ∈ H(v) and
∑

u∈V

DwF (u) = 0, F ∈ H(E).

Based on the previous definitions, we can define two upwind

gradients G±
w : H(V ) → H(E), expressed by the following

expressions

G±
w f(u, v)

def.
= γuv

(

f(v)− f(u)
)±

. (4)

with the notation (x)+ = max(0, x) and (x)− = −min(0, x).

We define the directional derivative of a function f ∈
H(V ), noted (∂vf) as

∂vf(u)
def.
= γuv

(

f(v)− f(u)
)

. (5)

It is easy to show that the k-order directional derivative is

∂k
v f(u) = (−1)kγk

uv

(

f(v)− f(u)
)

. (6)

We also introduce two morphological directional partial

derivative operators (external and internal), respectively de-

fined as

(∂±
v f)(u)

def.
=

(

(∂vf)(u)
)±

(7)

The discrete non-local weighted gradient of a function f ∈
H(V ), noted ∇wf : H(V ) → IR|V|, is defined on a vertex

u ∈ V as the vector of all partial derivatives with respect to

the set of edges (u, v) ∈ E:

(∇wf)(u)
def.
=

(

(

∂vf
)

(u)
)T

v∈V
. (8)

Similarly, discrete upwind non-local weighted gradients are

defined as

(∇±
wf)(u)

def.
=

(

(

∂±
v f

)

(u)
)T

v∈V
. (9)

The Lp norms, 1 6 p < ∞ of these gradients : ‖∇wf‖p
and ‖∇±

wf‖p, allow to define the notion of the regularity of a

function around a vertex. They are expressed as :

‖
(

∇±
wf

)

(u)‖p =

[

∑

v∈V

γp
uv

(

f(v)− f(u)
)±

]

1
p

(10)

Similarly, the L∞ norm of these gradients is expressed as :

‖
(

∇±
wf

)

(u)‖∞ = max
v∈V

(

γuv|
(

f(v)− f(u)
)±

|
)

(11)

They can be used to construct several regularization

functionals on graphs. One can remark that all these

definitions do not depend on the graph structure.

B. Previous works

In this Section, we first recall our previous works on the

expression of the p-Laplacian on graphs for 1 ≤ p < ∞ [31],

[4] as well as PdEs based mathematical morphology.

1) p-Laplacian: In our previous works, we focused on

the expression of the p-Laplacian on weighted graphs with

1 ≤ p < ∞. We consider the non-local anisotropic p-Laplace

operator of a function f ∈ H(V ), noted ∆w,p : H(V ) →
H(V ), defined by:

(

∆w,pf
)

(u) = 1
2Dw

(

∣

∣

(

Gwf
)
∣

∣

p−2(
Gwf

)

)

(u). (12)

The non-local anisotropic p-Laplace operator of f ∈ H(V ),
at a vertex u ∈ V , can be computed by [32]:

(

∆w,pf
)

(u) =
∑

v∼u

(

ϕw,pf
)

(u, v)
(

f(v)− f(u)
)

(13)

with

(ϕw,pf)(u, v) = γp
uv|f(v)− f(u)|p−2. (14)

This operator is nonlinear if p 6= 2. In this latter case, it

corresponds to the combinatorial graph Laplacian. To avoid

zero denominator in (13) when p ≤ 1, |f(v) − f(u)| is

replaced by |f(v)− f(u)|ǫ = |f(v)− f(u)|+ ǫ, where ǫ → 0
is a small fixed constant.
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In order to simplify the notations, we will now refer to

the non local anisotropic p-Laplacian as the p-Laplacian. De-

pending on γuv definition, we will consider the two following

p-Laplacians:

γuv =
√

w(u, v) → ∆U
w,p : Unnormalized p-Laplacian (15)

γuv =

√

w(u, v)

δw(u)
→ ∆w,p : Normalized p-Laplacian (16)

As an example, in the case where p = 2, we have :

∆U
w,2 =

∑

v∼u

w(u, v)
(

f(v)− f(u)
)

. (17)

∆w,2 =
1

δw(u)

∑

v∼u

(

w(u, v)f(v)
)

− f(u). (18)

(19)

2) p-Laplacian regularization and non-local average filter-

ing: Let f0 ∈ H(V ) be a given function defined on the

vertices of a weighted graph G = (V,E,w). In a given

context, this function represents an observation of a clean

function h ∈ H(V ) corrupted by an additive noise n ∈ H(V )
such that f0 = h+ n. To recover the uncorrupted function h,

the processing task is to remove the noise n from f0. A

commonly used method is to seek for a function f ∈ H(V ),
which is regular enough on G, and also close enough to f0.

This can be formalized by the minimization of an energy

functional which involves a regularization term (or penalty

term) plus an approximation one (or fitting term). In this paper,

we consider the following model:

h ≈ arg min
f :V→IR

Jw,p(f) +
λ
2 ‖f − f0‖22, (20)

where Jw,p(f)
def.
= 1

2p

∑

u∈V

‖
(

∇wf
)

(u)‖pp (21)

is a gradient-based functional, and λ ∈ IR is a regularization

parameter, called Lagrange multiplier, that controls the trade-

off between the penalty term and the fitting term.

To get the solution of (20), we consider the following system

of equations (Euler-Lagrange equation) [4], [31], :

∂Jw,p(f)

∂f(u)
+ λ(f(u)− f0(u)) = 0, ∀u ∈ V, (22)

where the first term denotes the variation of (21) with respect

to f at a vertex u. It is easy to show that this variation is equal

to [4], [31]:

∂Jw,p(f)

∂f(u)
= −

(

∆w,pf
)

(u) (23)

Equation (22) can be rewritten as:

λf0(u) =
(

λ+
∑

v∼u

γp
uv|f(v)− f(u)|p−2

)

f(u)

+
∑

v∼u

γp
uv|f(v)− f(u)|p−2f(v)

(24)

Since this is a nonlinear system, an interesting approximate

solution is provided by the linearized Gauss-Jacobi iterative

algorithm (see [31] for more details) , an iteration of which is

decomposed in the following two steps:























βp,n
uv =

∑

v∼u

γp
uv|f

n(v)− fn(u)|p−2, ∀(u, v) ∈ E,

fn+1(u) =

λf0(u) +
∑

v∼u
βp,n
uv fn(v)

λ+
∑

v∈V

βp,n
uv

, ∀u ∈ V.

(25)

This describes a family of neighborhood filters. Indeed, at each

iteration, the new value of f at a vertex u depends on two

quantities: the initial value f0(u), and a weighted average of

the filtered values of f in the neighborhood of u. The choice of

the regularization parameters and the choice of the graph allow

to retrieve and to extend several well-known filters proposed

in the context of image smoothing and denoising. In particular,

for p=2, iteration (25) is rewritten as:

fn+1(u) =
λf0(u) +

∑

v∼u γ
2
uvf

n(v)

λ+
∑

v∼u γ
2
uv

. (26)

This filter allows to recover many other filtering schemes, such

as bilateral filter, TV-digital filter, non-local means, etc... See

[4] for details.

When λ = 0 (no fitting term) and γuv =
√

w(u, v), we obtain

the non-local mean filter : fn+1(u) = NLM
(

fn
)

(u), with

NLM
(

f
)

(u) =

∑

v∼u w(u, v)f(v)
∑

v∼u w(u, v)
. (27)

3) PdE-based morphology on graphs: Adaptive algebraic

and PDEs-based morphology have recently received a lot of

attention. Such operators can be adaptive with spatially-variant

structuring elements or intensity level-adaptive. For instance,

one can quote the following works [33], [34], [35] for image

processing or [36], [37] that extend the property of translation

invariance or morphological operators in a spatially-varying

morphology framework. The interested readers can also refer

to [38] and references therein for a recent overview of adaptive

morphology. A study of mathematical morphology for non-

local filtering can be found in [39]. In the field of image

processing, one also can quote the following works that

investigate morphological operators on graphs [40], [41], [42],

[43], [44].

Following another approach, in [28], [30], using the ex-

pression of weighted morphological gradients (9) based on

PdEs, we have defined the discrete analogue of the continuous

PDEs-based dilation and erosion formulations. Continuous

scale morphology [45] defines flat dilation δ and erosion

ǫ of a function f0 : IRm → IR by using structuring sets

B={x : ‖x‖p≤1} with the following general PDEs [46]:

∂δ(f)

∂t
=∂tf=+‖∇f‖p and

∂ε(f)

∂t
=∂tf=−‖∇f‖p , (28)

where f is a modified version of f0, ∇ is the gradient

operator, ‖.‖p corresponds to the Lp-norm, and one has the

initial condition f = f0 at t = 0. We have proposed in

[28] the discrete PdEs analogue of PDEs-based dilation and

erosion formulations and obtained the following expressions
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over graphs. For a given initial function f0∈H(V ):

∂δ(f)(u)

∂t
= ∂tf(u) = +‖(∇+

wf)(u)‖p , and

∂ε(f)(u)

∂t
= ∂tf(u) = −‖(∇−

wf)(u)‖p , ∀u∈V

(29)

where ∇+
w and ∇−

w are weighted pseudo-morphological

gradients (9). (We use the term morphological by analogy

with the continuous case) The relation between this

morphological framework and adaptive methods proposed in

the literature such as amoebas [39] or PDEs-based viscous

morphology [47] has been discussed in [30]. In the sequel, we

will show that for particular values of p (1,∞), resolutions of

these equations can be interpreted as average filters. For the

sake of clarity, we will simply call them Non Local Dilation

(NLD) and Non Local Erosion (NLE), instead of Non Local

Pseudo Dilation (respectively Erosion).

III. FROM PDES-BASED MORPHOLOGY TO AVERAGE

FILTERING OPERATORS AND INFINITY LAPLACIAN

Before presenting our new formulation of non-local p-

Laplacian, we will first introduce some new expressions and

results involved in this formulation. First, we will provide

new interpretation of morphological operators as a family of

non-local digital averaging filters. Then, we will present a

new expression of the ∞-Laplacian, based on morphological

gradients, and show that this new expression is linked with

the newly introduced family of non-local digital filters.

A. Non-local averaging filters

In this Section, we will show that morphological operators

(29) can be interpreted as a family of non-local digital

averaging filters, according to the value of p and the graph

topology.

• Case p = ∞: The dilation process (29) can be expressed

as the following iterative PdE:

fn+1(u) = fn(u)

+ ∆tmax
u∼v

(

√

w(u, v)max
(

fn(v)− fn(u), 0
)

)

.

(30)

In the case where ∆t = 1, this previous PdE can

be interpreted as an iterative non-local dilation process

fn+1 = NLD(fn) where NLD : H(V ) → H(V ) is

defined according to (30).

In the case where w = 1, and with a particular graph

construction (u ∈ N(u)) the NLD recovers the true

morphological formulation, as :

fn+1(u) = fn(u) + max
v∼u

(

max
(

fn(v)− fn(u), 0
)

)

= fn(u) + max
v∼u

(

fn(v)− fn(u)
)

= max
v∼u

(

fn(v)
)

(31)

In a more general case, with an arbitrary weight w,

equation (30) can be rewritten as

fn+1(u) =
(

1−
√

w(u, vm)
)

fn(u)+
√

w(u, vm)fn(vm),
(32)

where vm = argmin
v∼u

(

f(v)− f(u)
)

.

The non-local erosion NLE is defined similarly and can

be interpreted as a minimum between f(u) and every

f(v) such that v is similar and in the neighborhood of

u.

• Case p = 1:

fn+1(u) = fn(u)

+ ∆t
∑

v∼u

w(u, v)max
(

fn(v)− fn(u), 0
)

(33)

can be rewritten as

fn+1(u) = fn(u) + ∆t
∑

v∈V +n
u

w(u, v)
(

fn(v)− fn(u)
)

fn+1(u) = fn(u)
(

1−∆t
∑

v∈V +n
u

w(u, v)
)

+∆t
∑

v∈V +n
u

w(u, v)fn(v)

(34)

where V +n
u = {v ∼ u | fn(v) > fn(u)}. Now, if we

define ∆t as

∆t = max
u∈V

( 1
∑

v∈V +n
u

w(u, v)

)

,

the dilation process can be expressed with














fn+1(u) =

∑

v∈V
+n
u

w(u,v)fn(v)

∑

v∈V
+n
u

w(u,v) if V +n
u 6= ∅

fn+1(u) = fn(u) otherwise

(35)

which is a non-local average filtering.

Similarly the erosion process can be expressed as














fn+1(u) =

∑

v∈V
−n
u

w(u,v)fn(v)

∑

v∈V
−n
u

w(u,v) if V −n
u 6= ∅

fn+1(u) = fn(u) otherwise

(36)

where V −n
u = {v ∼ u | fn(v) < fn(u)}.

Finally, these two PDEs, (35) and (36), define a new class

of conditional non-local means expressed as conditional

non-local dilation, and erosion. These operators can be

interpreted as non-local means, where the neighborhood

used to compute the mean is restricted to the subset

of neighbors the value of f is superior (respectively

inferior) to f(u). In the sequel, we denote them NLM+

(Non-Local Mean Dilation) and respectively NLM−

(Non-Local Mean Erosion).

• Case p = 2, with a constant weight function (w = 1). We

have shown in a previous paper [28] that these discrete
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morphological operators recover the exact Osher-Sethian

first order upwind discretization schemes for PDEs based

morphology [48].

B. anisotropic p-Laplacian as a morphological process

We now provide a new relationship between the anisotropic

Laplacian and morphological gradients. We show this new

relation in the sequel.

Proposition 1: For 1 ≤ p < +∞, at a vertex u ∈ V
(

∆w,(p+1)f
)

(u) = ‖(∇+
w′f)(u)‖pp − ‖(∇−

w′f)(u)‖pp (37)

with w′(u, v) = w(u, v)
p+1
p .

Proof: From (13) and (10), we have

(∆w,pf)(u) =
∑

v∼u

wp/2
uv |f(v)− f(u)|p−2(f(v)− f(u)).

Since |x| = x+ + x− and x = x+ − x−, one has, with A =
(f(v)− f(u)):

(∆w,(p+1)f)(u) =
∑

v∼u

w
p+1
2

uv (A
−

− A
+
)(A

+
+ A

−
)
p−1

. (38)

Then, by developing (A+ + A−)p−1, since A+A− = 0, it

is easy to obtain (37).

If we take some particular values of p, we have the following

relations. For p = 2, (37) gives

(∆w,2f)(u) = ‖(∇+
w2f)(u)‖1 − ‖(∇−

w2f)(u)‖1. (39)

The classical combinatorial Laplacian operator can therefore

be expressed as the difference of two morphological external

and internal gradients. This new expression of the p-Laplacian

is the basis of our proposition for an expression of the infinity

Laplacian on graphs.

C. The infinity Laplacian on graphs

The infinity Laplacian operator is related to the PDE infinity

Laplacian equation that can be expressed as

−∆∞f = 0 (40)

where the expression

∆∞f =
n
∑

i,j

∂f

∂xi

∂f

∂xj

∂f

∂xi
∂xj

(41)

denotes the infinity Laplacian on Euclidean domains for

smooth functions in some open sets Ω ⊂ IRn. Aronsson [49]

interpreted formally ∆∞f = 0 as the limit of the minimization

problem of
∫

‖∇f‖pdx as p → ∞, under given boundary

conditions.

As in the continuous case, this operator can be formally

derived as minimization of the following energy on graphs, as

p goes to the infinity.

Jw,p(f) =
∑

u∈V

‖∇wf(u)‖
p
p (42)

This minimization leads to the p-Laplacian equation

∆w,pf(u) = 0, ∀u ∈ V .

From proposition 1, we have

(∆w,pf)(u) = ‖(∇+
w′f)(u)‖

p−1
p−1 − ‖(∇−

w′f)(u)‖
p−1
p−1 = 0

with w′(u, v) = w(u, v)
p

p−1 that we can easily simplify into

‖(∇+
w′f)(u)‖p−1 − ‖(∇−

w′f)(u)‖p−1 = 0. (43)

Using (43) and letting p → ∞, one can have formally

‖(∇+
w)f(u)‖∞ − ‖(∇−

wf)(u)‖∞ = 0. (44)

Based on proposition 1, and the previous limit, we propose a

new definition of the ∞-Laplacian:

(∆w,∞f)(u)
def.
= 1

2

[

‖(∇+
wf)(u)‖∞ − ‖(∇−

wf)(u)‖∞
]

(45)

With an appropriate weight function (w(u, v) = 1, for all

(u, v) ∈ E), the proposed definition recovers well-known finite

difference approximation for the infinity Laplacian. Indeed,

(45) can be rewritten as (with u ∼ u):

(∆1,∞f)(u) = 1
2

[

max
v∼u

f(v) + min
v∼u

f(v)
]

− f(u)

For instance (∆1,∞f)(u) is known in the community of

(algebraic) mathematical morphology as the morphological

Laplacian. For a general weighted graph, equation (45) can

be rewritten as a morphological operator on graphs, involving

non-local dilation and non-local erosion previously defined.

(∆w,∞f)(u)

= 1
2

[

2f(u) + ‖(∇+
wf)(u)‖∞ − ‖(∇−

wf)(u)‖∞
]

− f(u)

= 1
2 [NLDf(u) +NLEf(u)]− f(u)

(46)

IV. NON-LOCAL NORMALIZED p-LAPLACIAN

Considering our framework of PdEs, with the discretization

of p-Laplacian and infinity Laplacian on a general graph

domain, we now propose a new family of p-Laplacian obtained

by the discretization of the game p-Laplacian.

A. Definition

We recall that the p-Laplacian of a function f : Ω ⊂ IRn →
IR is given as

∆pf = div(|∇f |p−2.∇f) = |∇f |p−2{(p− 2)∆∞f +∆f}.
(47)

The normalized version of this p-laplacian operator, referred

to game p-laplacian is defined [50] as

∆N
p f(u) =

1

p|∇f |p−2
∆pf (48)

This operator was recently introduced to model a stochastic

game with noise called Tug of war game. We can write that

∆N
p f =

(p− 2)

p
∆N

∞f +
1

p
∆f

= α∆N
∞f + β∆f

(49)
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with α = (p− 2)/p and β = 1/p and where

∆N
∞f =

1

|∇f |2
∆∞f. (50)

With a simple discretization of (49) and using discrete

version of p-Laplacian, we propose a non-local version of

the normalized p-Laplacian. This is given by the following

equation.

∆w,α,βf(u)
def
= α(∆w,∞f)(u) + β(∆w,2f)(u). (51)

Usual Laplacians and infinity Laplacian can be easily recov-

ered with particular values of α and β, as:

∆w,1,0 = ∆w,∞

∆w,0,1 = ∆w,2

(52)

Using (46), equation (51) can be rewritten as a morphologi-

cal operator involving non-local erosion and non-local dilation

∆w,α,βf = α
2

[

NLD
(

f
)

+NLE
(

f
)]

+ βNLM
(

f
)

− f
(53)

Connection with non-local PdEs : Similarly, given a Eu-

clidean graph G(V,E,w), with V = Ω ⊂ IRn, E = {(x, y) ∈
V ×V | w(x, y) > 0} and

w(x, y) =

{

1
|x−y|2s x 6= y, s ∈ [0, 1]

0 otherwise.
(54)

In the case where β = 0, our formulation (53) corresponds to

recently proposed Hölder infinity Laplacian equation proposed

by Chambolle et al. in [51].

∆w,∞f(x) =
1

2

[

max
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
)

+ min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
)

] (55)

This operator is formally derived from the minimization of an

energy on the form

∫

Ω

∫

Ω

[f(y)− f(x)|p

|x− y|p×s
dxdy (56)

as p goes to infinity. In [51], it was proved that the following

equation
{

∆w,∞f(u) = 0, u ∈ Ω

f(u) = g(u), u ∈ ∂Ω
(57)

(and with some conditions on g), has a unique solution.

In the case where α = 0, this formulation recovers the non-

local p-Laplacian, as

1

δw(x)

∫

Ω

w(x, y)
(

f(y)− f(x)
)

dy. (58)

Finally, in the most general case (with any α, β and w), equa-

tion (53) corresponds to a PDE which interpolates between

infinity Laplacian and Laplacian.

B. Study of the existence and uniqueness of the p-Laplacian

equation

Now, we will study the Dirichlet problem associated to this

non-local p-Laplacian equation (51).

Proposition 2: Given a connected graph G = (V,E,w), a

set A ⊂ V and a function g : ∂A → IR where ∂A is the

boundary of A . Then, there exists a unique function f ∈
H(V ) such that f verifies the following equation:

{

α(∆w,∞f)(u) + β(∆w,2f)(u) = 0 u ∈ A

f(u) = g(u) u ∈ ∂A
(59)

with α, β ∈ IR+ and α+ β = 1.

For a proof of existence and uniqueness, we introduce the

following non-local average operator (NLA)

NLA
(

f
)

= α
2

[

NLD
(

f
)

+NLE
(

f
)]

+ βNLM
(

f
)

(60)

and equation (59) can be rewritten as f(u) = NLA(f)(u).

First, let us prove the uniqueness of the solution by using

the comparison principle.

Proof: Given two functions f and h, we will prove that

if f = NLA(f) and h = NLA(h) with f ≤ h on ∂A,

then, f ≤ h on the whole domain V . By the argument of

contradiction, we assume that there exists M such that

M = sup
V

(f − h) > 0.

Let B = {u ∈ A : f(u) − h(u) = M}. By construction we

have B 6= ∅ and B ∩ ∂A = ∅. We claim that there exists

u0 ∈ B and v ∈ N(u0), such that v /∈ B. Otherwise, if for

each u ∈ A and for each v ∈ N(u) we have v /∈ B, then it

implies that B ∩ ∂A 6= ∅, since the graph is connected : there

is a contradiction. Then, from the definition of M , we have

f(u0)− h(u0) ≥ f(u)− h(u) ∀u ∈ N(u0)

h(u)− h(u0) ≥ f(u)− f(u0) ∀u ∈ N(u0).

In particular we can write,

h(v)− h(u0) > f(v)− f(u0).

From these inequalities, and using definitions of non local

morphological processes, we have

max
u∼u0

(

√

w(u0, u)max
(

h(u)− h(u0), 0
)

)

≥

max
u∼u0

(

√

w(u0, u)max
(

f(u)− f(u0), 0
)

)

NLD
(

h
)

(u0)− h(u0) ≥ NLD
(

f
)

(u0)− f(u0) (61)

similarly

max
u∼u0

(

√

w(u0, u)min
(

h(u)− h(u0), 0
)

)

≥

max
u∼u0

(

√

w(u0, u)min
(

f(u)− f(u0), 0
)

)

h(u0)−NLE
(

h
)

(u0) ≥ f(u0)−NLE
(

f
)

(u0) (62)
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and finally.
∑

u∼u0

w(u0, u)
(

h(u)− h(u0)
)

∑

u∼u0

w(u0, u)

>
∑

u∼u0

w(u0, u)
(

f(u)− f(u0)
)

∑

u∼u0

w(u0, u)

NLM
(

h
)

(u0)− h(u0) > NLM
(

f
)

(u0)− f(u0) (63)

This previous inequality is strict because we know there is

v ∈ N(u0) such that h(v)− h(u0) > f(v)− f(u0).
From relations (61), (62) and (63), we can write the follow-

ing inequality

α
2

[

NLD
(

h
)

(u0) +NLE
(

h
)

(u0)
]

+ βNLM
(

h
)

(u0)− h(u0).

>
α
2

[

NLD
(

f
)

(u0) +NLE
(

f
)

(u0)
]

+ βNLM
(

f
)

(u0)− f(u0).

and

NLA
(

h
)

(u0)− h(u0) > NLA
(

f
)

(u0)− f(u0)

h(u0)− h(u0) > f(u0)− f(u0)

0 > 0

This shows a contradiction and concludes the proof.

Now, let us prove existence.

Proof: First, we recall the Bouwer fixed point theorem :

A continuous function from a convex, compact subset of an

Euclidean space to itself has a fixed point.

Then, we identify H(V ) as IRn and consider the set K =
{f ∈ H(V ) | f(u) = g(u) ∀u ∈ ∂A, and m 6 f(u) 6

M ∀u ∈ A}, where m = min
∂A

(

g(u)
)

and m = max
∂A

(

g(u)
)

.

By definition, K is a convex and compact subset of IRn.

It is easy to show that the map f → NLA(f) is continuous

and take from K to K. So, by the Bouwer fixed point theorem,

the map NLA has a fixed point that is solution of NLA(f) =
f . This complete the proof.

C. From p-Laplacian on graphs to Tug-of-War games

In this Section, we show that the value functions of

Tug-of-War (TOW) games coincide with the solution of the

Dirichlet problem (59) on particular weighted graphs.

Tug-of-War game: The tug-of-war games related to the

infinity Laplacian studied in [5] can be briefly described as

follows: a tug-of-war game is a two-person, zero-sum game,

where two players are in contest and the total earnings of

one are the losses of the other. The rules of the game are the

following: consider a bounded domain Ω ⊂ IRn and g : ∂Ω →
IR a Lipschitz continuous function (the final payoff function).

At the initial time, a token is placed at a point x0 ∈ Ω. Then

a (fair) coin is tossed and the winner of the toss is allowed to

move the game position to any x1 ∈ Bε(x0) (where Bε(x) =
{y | |y−x| 6 ε}. At each turn, the coin is tossed again, and the

winner chooses a new game state xk ∈ Bε(xk−1). Once the

token has reached some xτ ∈ ∂Ω, the game ends and the first

player earns g(xτ ) (while the second player earns −g(xτ )).
The values of the game for player I and II, fI(x0), fII(x0),
are the least possible outcomes that each of the players expect

to get when the ε-game starts as x0. In [7] it has been shown

that this game has an expected value fε(x0) (called the value

of the game) that verifies the Dynamic Programming Principle

(DPP),

fε(x) =
1

2
max

y∈Bε(x)
fε(y) +

1

2
min

y∈Bε(x)
fε(y), ∀x ∈ Ω, (64)

here it is understood that fε(x) = g(x) for x ∈ ∂Ω. This

formula can be intuitively explained from the fact that the

first player tries to maximize the expected outcome (and has

the probability 1/2 of selecting the next state of the game)

while the second tries to minimize the expected outcome (and

also has the probability 1/2 of choosing the next position).

The authors also prove that the ε-value of the game is a

Lipschitz function converging uniformly as ε goes to zero,

named the continuous value of the game, which solves the

infinity Laplacian Equation (50).

Tug-of-War game with noise: If the game is modified as

follows: at point x in Ω, player I and player II play ǫ-step tug-

of-war game with probability α, and with probability β such

thatα + β = 1, a random point in ball of radius ǫ centered

at x is chosen. The value functions of the game satisfy the

Dynamic Programming Principle

f(x) =
α

2

[

max
y∈Bǫ(x)

f(y) + min
y∈Bǫ(x)

f(y)

]

+
β

|Bǫ(x)|

∫

Bǫ(x)

f(y)dy

(65)

with f(x) = g(x) for x in Ω where α and β ∈ IR+ such as

α + β = 1. A detail proof for existence and uniqueness of

theses type of functions was shown in [7].

In the general case, it was proved in [6] that functions

that satisfy (65) with β 6= 0 approximate solutions of the

p-Laplacian equation ∆pf = div(|∇f |p−2.∇f) = 0.

Let us rewrite (65) in the context of our PdEs frame-

work. We consider the following Euclidean ε-adjacency graph

G(V,E,w) with V = Ω ⊂ IRn, E = {(x, y) ∈ Ω×
Ω | w(x, y) > 0}. and

w(x, y) =

{

1 |y − x| 6 ε

0 otherwise
(66)

For this particular case, and for more clarity, the weighted

gradient and p-Laplacian are denoted as ∇1, respectively ∆1,p.

Using the definitions of the L∞ norms of morphological

gradients (11), it is easy to obtain the following relations.

max
Bε(x)

f(y) = ‖(∇+
1 f)(x)‖∞ + f(x)

min
Bε(x)

f(y) = f(x)− ‖(∇−
1 f)(x)‖∞.
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In the case where β = 0 and α = 1, and using the previous

morphological operators, one can transpose (65) as

f(u) = 1
2

[

max
v∼u

f(v) + min
v∼u

f(v)
]

,

= 1
2

[

2f(u) + ‖(∇+
1 f)(u)‖∞ − ‖(∇−

1 f)(u)‖∞
]

⇔ 1
2

[

‖(∇+
1 f)(u)‖∞ − ‖(∇−

1 f)(u)‖∞
]

= 0

(67)

Finally, in the case where β 6= 0, we obtain the following

transposition of DPP (65)

f(u) =
α

2

[

2f(u) + ‖(∇+
1 f)(u)‖∞ − ‖(∇−

1 f)(u)‖∞
]

+
β

N(u)

∫

v∈N(u)

f(v)dv
(68)

Then, using the formulation of the non-local infinity Laplacian

(45) on graphs, equation (68) can be rewritten as

f(u) =
α

2
[2f(u) + (∆1,∞f)(u)] +

β

N(u)

∫

v∈N(u)

f(v)dv.

(69)

Similarly, the second term of the previous equation can be

rewritten using the formulation of the normalized Laplacian

on graphs (16).

1

N(u)

∫

v∈N(u)

f(v)dv = (f(u)− (∆1,2f)(u)) (70)

and then,

f(u) =
α

2
(2f(u)− (∆1,∞f)(u)) + β (f(u)− (∆1,2f)(u)) ,

(71)

which corresponds to our newly introduced definition of the

non-local p-Laplacian on graphs.

D. p-Laplacian diffusion on graphs

In image processing, non-local models have shown their

great advantages overall classical local models, since smooth-

ness is not required. They have also shown their ability to

preserve geometric and repetitive structures in images (as

textures). In this Section, we study a non-local diffusion prob-

lem involving the non-local p-Laplacian operator and we will

show that the corresponding p-Laplacian diffusion process can

be written as an iterative non-local average filtering process.

Given the following equation

{

∂f(u,t)
∂t = ∆w,α,βf(u, t)

f(u, t = 0) = f0(u)
(72)

where f : V × [0, T ] → IR is a function and f0 : V → IR the

initial value of f . One has

∂f (u,t)

∂t
=

fn+1(u)− fn(u)

∆t
(73)

where fn(u) = f(u, n∆t), ∆t = λ.

Then,

fn+1(u) = fn(u) + λα∆w,∞fn(u) + λβ∆w,2f
n(u).

= fn(u) + λα

[

‖(∇+
wf)(u)‖∞ − ‖(∇−

wf)(u)‖∞
2

]

+ λβ

[∑

w(u, v)fn(u)

δw(u)
− fn(u)

]

.

= (1− λ)fn(u)

+ λα

[

NLE
(

fn
)

(u) +NLD
(

fn
)

(u)

2

]

+ λβNLM
(

fn
)

(u).
(74)

One can remark that in the case where λ = 1, equation (74)

can be rewritten as a non local average:

fn+1(u) = NLA
(

fn
)

(u) (75)

One can also remark that such process is a digital filtering

process that combines non-local morphology (erosion and

dilation) and non-local means.

V. APPLICATIONS TO INVERSE PROBLEMS ON WEIGHTED

GRAPHS

In this Section, we illustrate the behavior of normalized p-

Laplacian and morphological operators presented in this paper,

through some inverse problems as functions restoration or

interpolation on graphs. The experiments provided are not here

to solve a particular application but to illustrate the potential-

ities of our proposal. Moreover, our aim is not to compare

the benefits of p-Laplacian versus mathematical morphology

for the inverse problems we consider. As a consequence,

we will not compare both methods but show the benefits of

each method as a sole methodology. In addition, since the

processes we propose on graphs are extensions of classical

methods when one considers specific graph topologies and

graph weights, we will not provide comparison for each

applications and refer the interested reader to our other papers

that show the benefits of our approaches over conventional

methods.

A. Graph construction

There exists several popular methods to transform discrete

data {x1, ...xn} into a weighted graph structure. Considering

a set of vertices V such that data are embedded by functions

of H(V ), the construction of such graph consists in modeling

the neighborhood relationships between the data through the

definition of a set of edges E and using a pairwise distance

measure µ : V × V → IR+. In the particular case of images,

the ones based on geometric neighborhoods are particularly

well-adapted to represent the geometry of the space, as well

as the geometry of the function defined on that space. One

can quotes:

• Grid graphs which are most natural structures to describe

an image with a graph. Each pixel is connected by an

edge to its adjacent pixels. Classical grid graphs are

4-adjacency grid graphs and 8-adjacency grid graphs.

Larger adjacency can be used to obtain non-local graphs.
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• Region adjacency graphs (RAG) which provide very

useful and common ways of describing the structure of

a picture: vertices represent regions and edges represent

region adjacency relationship.

• k-neighborhood graphs (k-NNG) where each vertex vi is

connected with it(s k-nearest neighbors according to µ.

Such construction implies to build a directed graph, as

the neighborhood relationship is not symmetric. Never-

theless, an undirected graph can be obtained while adding

an edge between two vertices vi and vj if vi is among the

k-nearest neighbor of vj or if vj is among the k-nearest

neighbor of vi
• k-Extended RAG (k-ERAG) which are RAGs extended by

a k-NNG. Each vertex is connected to adjacent regions

vertices and to it’s k most similar vertices of V .

The similarity between two vertices is computed according to

a measure of similarity g : E → IR+, which satisfies:

w(u, v) =

{

g(u, v) if (u, v) ∈ E

0 otherwise

Usual similarity functions are as follow:

g0(u, v) =1,

g1(u, v) =exp
(

−µ
(

f0(u), f0(v)
)

/σ2
)

with σ > 0

where σ depends on the variation of the function µ and control

the similarity scale.

Several choices can be considered for the expression of the

feature vectors, depending on the nature of the features to be

used for the graph processing. In the context of image pro-

cessing, one can quote the simplest gray scale or color feature

vector Fu, or the patch feature vector F τ
u =

⋃

v∈Wτ (u) Fv (i.e,

the set of values Fv where v is in a square window Wτ (u)
of size (2τ + 1)× (2τ + 1) centered at a vertex pixel u ), in

order to incorporate non-local features.

B. Restoration and Simplification

1) Scalar image smoothing: In this paragraph, we illustrate

the abilities of the normalized p-Laplacian diffusion for filter-

ing real images.

A scalar image of N pixels is considered as a function

f0 : Z
2 → IR which defines a mapping from the vertices

to gray levels. Figure 1 shows sample results obtained with

different graph configurations (local and non-local), built from

the original noisy image, and different values of parameters

α and β. The first row shows results with α = 1 and

β = 0, what corresponds to the infinity Laplacian. Second

row shows results with α = 0 and β = 1, what corresponds

to the normalized Laplacian. Finally third row shows results

with α = 0.5 and β = 0.5 what can be interpreted as

an intermediary filtering operator. First and fourth columns

present results computed on a usual 4-adjacency grid graph

(what is the natural structure of the image), with a constant

weight function w = 1. Second and fifth columns present

results obtained on a usual 4-adjacency grid graph, with and

image dependent weight function. Finally, third and sixth

columns present results computed on a non-local graph, using

a 15× 15 neighborhood window and a 5× 5 patch as feature

vector.

A second illustration is proposed in Fig. 2, that uses the

non-Euclidean triangulated structure of a textured teapot mesh

as a graph. Left columns presents results computed using

the natural graph structure of the mesh and w = 1. Finally,

right column presents results computed using a largest graph

structure, where each vertex u is connected to every vertices

v such that there is less than 3 vertices between u and v in

the original mesh structure.

Original

w = 1, 1 iteration, w = g1, 100 iterations

α
=

1
,
β
=

0
α
=

0
,
β
=

1

Fig. 2. Textured surface simplification with different parameters values of
α, β and different weight functions. The graph is local and built from the
triangulated mesh structure. First columns shows results using a constant mesh
functions. Second column shows results with an adapted weight function. See
text for more details.

2) Morphology: In this paragraph, we illustrate

morphological NLE and NLD on both image and

textured meshes structures. Figure 3 presents results of

both morphological processes on a natural image with

different graph configurations, weight functions and number

of iterations. First and fourth columns show results for a

4-adjacency grid graph, with a constant weight (respectively

5 an 10 iterations). Second and fifth columns show results

for a 4-adjacency grid graph, with image dependent weight

(respectively 5 an 10 iterations). Finally, third and sixth

columns show non-local graph using15 × 15 neighborhood

window and 5 × 5 patches (respectively 5 an 10 iterations).

Figure 4 presents results of these same processes on a textured

mesh, using the natural graph structure of the mesh, with

different weight functions (unweighted and data dependent).

C. Interpolation

Many tasks in image processing, computer vision and

machine learning can be formulated as interpolation problems.

Image and video colorization, inpainting and semi-supervised
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Original

w = 1, 1 iteration, w = g1, 100 iterations

N
L
D

N
L
E

Fig. 4. Non-local morphology (NLD and NLE) on a textured surface,
using different weight functions in local and non-local configurations. The
graph is local and built from the triangulated mesh structure. First columns
shows results using a constant mesh functions. Second column shows results
with an adapted weight function. See text for more details.

segmentation or clustering are examples of these interpolation

problems. Interpolating data consists in constructing new val-

ues for missing data in coherence with a set of known data.

In this paper, we propose to use the non-local normalized p-

Laplacian as a unified framework for solution for both semi-

supervised segmentation or clustering and image inpainting.

For this, we solve the following Dirichlet problem:

{

∆w,α,β

(

f
)

(u) = 0 u ∈ V0

f(u) = g(u) u ∈ V − V0 = ∂V0

(76)

where V0 ⊂ V is the subset of vertices associated to the

missing information. The initial value function g is application

dependent and will be defined for each application in the

sequel.

1) Semi supervised Segmentation and Classification: In

the case of image semi supervised segmentation, graph-based

approaches have became very popular in recent years. Many

graph-based algorithms for image segmentation have been pro-

posed, such as graph-cuts [52], random walker [53], shortest-

paths [54], [55],watershed [56], [57], [58] or frameworks

that unify some of the previous methods (such as as power-

watershed) [59], [60]. Recently, these algorithms were all

placed into a common framework [59] that allows them to

be seen as special cases of a single general semi-supervised

algorithms. Several popular approaches [29], [54], [55], [58],

[61], [62] to perform a graph clustering consist in computing

a graph partition from the set of user’s seeds and a metric.

Interested reader should refer to [61] for more details.

In this paper, we propose to consider this problem as an

interpolation problem, where the function to interpolate is

the label function. Using equation (76), and considering two

classes A and B, the initial value label function g is defined

as follow










g(u) = −1 if u ∈ A

g(u) = 1 if u ∈ B

g(u) = 0 otherwise

(77)

At convergence, the class membership can be easily computed

by a simple threshold on the sign of f
Remark: In the case of more than two classes, multi-classes

segmentation can be performed by several segmentation of

one class versus the others.

Natural image segmentation using non-local graph:

In this paragraph, we show the benefits of non-local

schemes as compared to local ones for semi-supervised

image segmentation, especially for images that contain

fine and repetitive structures. Figure 5 presents several

segmentation results of a natural tiger image, with two

different (local and non-local) graph constructions and

different values for parameters α and β. The local graph

is built as a usual 4-adjacency grid graph where each pixel

is characterized by it’s color feature vector. The non-local

one is built using a 11 × 11 neighborhood window and each

pixel is characterized by a 3×3 patch of color feature vectors.

User seeds

Local, w = g1, Non-Local, w = g1

α
=

1
,
β
=

0
α
=

0
.5
,
β
=

0
.5

α
=

0
,
β
=

1

Fig. 5. Semi-supervised natural image segmentation with ∆w,α,β . First
column presents results with a local 4-adjacency grid graph where each pixel
is characterized by it’s color feature vector. Second columns presents non-
local results obtained with a larger neighborhood (each pixel u is linked with
any pixel in a 11 × 11 window centered on u) and pixels are characterized
by patches of size 3× 3. In both cases, results are provided for α = 1, β =
0(∆∞), α = 0.5, β = 0.5 and α = 0, β = 1. See text for more details.
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Comparison with state-of-the-art methods for semi-

supervised image segmentation: In this paragraph, we

provide (Fig. 6) comparative results for semi-supervised

segmentation, between our method and the most competitive

methods in the literature, such as graph cut, powerwatershed,

random walker, shortest path and watershed. These three

images come from the grabcut database and seeds are eroded

versions of the ones provided with the database (the seeds

and comparative results are reproduced as in Couprie’s paper

[59]). To demonstrate the performance of our formulation, it

is illustrated with the best results beyond all combinations

of α and β and local or non-local configurations. As it can

be seen from the results, our method provides competitive

results with all state-of-the-arts methods, with benefits when

used on textured images.

Natural image segmentation using RAG representation:

In some cases, in particular when the objects to be segmented

are numerous and not adjacent, the natural grid-representation

of images makes a segmentation impossible (unless building

a very huge and complete graph, that slows down a lot

the process or hand-labeling every object, what is not an

acceptable solution). To overcome this limitation we propose

to use a higher-level image representation using a partitioned

version of the image (a region map), on which is built a

k-ERAG. That is what is illustrated in Fig.7. The original

image presents a detail of a cytological slide we want to

process to extract the nuclei objects (in dark blue). The nuclei

are numerous and not adjacent (separated by background

or cytoplasm). We consider the nuclei as the first class and

the background plus cytoplasm as the second class, what

transform this extraction problem in a classification problem.

The second image present the image partition (computed

using a geometric diffusion algorithm [29]) which boundaries

are presented in red. The graph construction is illustrated

for a single vertex whose local edges (edges to adjacent

regions) are presented in green and non-local edges (edges

to k most similar regions in the whole image) are presented

in black. Finally, the third image presents the boundaries

of the extracted objects. The extraction was performed by

label interpolation α = 1, β = 0 (i.e. with ∆∞). One can

remark that, due to the non-local edges, all the regions of

non adjacent cellular objects have been labelized as cellular

objects.

Real data clustering: In this paragraph, we present an

illustration of label interpolation using equation (76) (we

only consider the case α = 1, β = 0) for real data clustering.

The data is a set of 200 digits (zero and one) from the USPS

database that we want to cluster in two classes (zeros vs

ones). To simplify the graph construction, we consider each

digit as a one-dimensional vector of 256 pixels gray values,

and the metric between the digits is a simple Euclidean

distance. Then, data are represented as a knn graph on which

the clustering is processed from for user seeds (two per class).

Figure 8 presents the graph, with initial seeds and clustering.

(a)

(b) (c)

Fig. 7. Semi supervised natural image segmentation using a partitioned
representation of the image : (a) Original image with superimposed two seeds
(green and red). (b) Partitioned version of the image (given by the red bound-
aries). The k-ERAG is illustrated for a single vertex with local (green) and
non-local (black) edges. (c) Segmentation result (with α = 1, β = 0(∆∞).
See text for more details.

Seeds Result

Fig. 8. Semi supervised data clustering with ∆α,β . See text for more details.

2) Non-local image inpainting: Digital inpainting is a

fundamental problem in image processing and has many

applications in different fields. It can be simply resumed

as reconstructing a damaged or incomplete image by filling

the missing informations in incomplete regions. In recent

years, many methods have been developed for interpolating

the geometry, the texture or both geometry and texture.

Among the methods of interpolation that have been proposed,

a number of methods are based on PDEs or variational,

see [63], [64] and reference therein. Since the work of

Buades et al. on non-local filtering [65], many non-local

methods for image inpainting have gained considerable

attention these recent years. This is in part due to their

superior performance in textured images, known weakness of

purely local methods. Recent works tend to unify the local

and non-local interpolation approaches [66]. A variational

framework for non-local image inpainting has been presented

[63]. A discrete non-local regularization framework for

image and manifold processing has been proposed. This

framework has been used to present a unifying approach of
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local geometric methods and non-local exemplar-based ones

for video inpainting [67].

Considering equation (76), inpainting problem can be sum-

marized as follow: V0 is the set of pixels with missing infor-

mation. g : V → H(V ) represents the known information.

f : V → H(V ) represents the image to reconstruct.

This is illustrated in Fig. 9 with different graph configurations

and weight functions and different values for parameters α and

β which correspond to ∆w,∞ and ∆w,2. First column presents

results for a 4-adjacency grid graph with data dependent

weight function. Second column presents results for a non-

local graph construction using a 31×31 neighborhood window

and 15 × 15 patches, with data dependent weight function.

Figure 10 gives another inpainting illustration on a natural

image, involving more complex structures and textures. The

graph is a non-local graph (25×25 neighborhood window and

15× 15 patches) with α = 1 and β = 0.

Original Missing information

Local, w = g1 Non Local, w = g1

α
=

0
,
β
=

1
α
=

1
,
β
=

0

Fig. 9. Natural image inpainting, with different parameters values of α, β

in local and non-local configurations. Left column presents results with a
local 4-adjacency grid graph. Right column presents non-local results, using
a 31× 31 neighborhood window and 15× 15 patches.

VI. CONCLUSION

In this paper, we have introduced a new class of non-local p-

Laplacian operators as a discrete adaptation of values function

of certain random tug-of-war-games. This new class is based

on new connections between non-local morphological PDEs,

p-Laplacian equation and non-local average filtering we have

also presented. We have proved existence and uniqueness of

the Dirichlet problem involving operators of this new class.

Finally, we have illustrated the interest and behavior of such

operators in some inverse problems in image processing and

machine learning.
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Fig. 1. Scalar image simplification on a gray level image with different parameters values of α, β and different weight functions in local and non-local
configurations, with 5 or 20 iterations. First row shows results for α = 1, β = 0 (∆∞). Second row shows results for α = 0.5, β = 0.5. Finally, third
column shows results for α = 0, β = 1 (∆2). See text for more details.
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Fig. 3. Illustration of non-local morphological erosion and dilation. First and fourth columns show results for a 4-adjacency grid graph, with a constant
weight (respectively 5 an 10 iterations). Second and fifth columns show results for a 4-adjacency grid graph, with image depend-ant weight (respectively 5 an
10 iterations). Finally, third and sixth columns show non-local graph using15× 15 neighborhood window and 5× 5 patches (respectively 5 an 10 iterations).
See text for more details.
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Fig. 6. Comparison between our approach and other local methods for semi-supervised image segmentation. Images come from the grabcut database and
seeds are eroded versions of ones provided in the database. For each image, we provide the best result beyond all combinations of α and β and local or
non-local configurations.


