
HAL Id: hal-00404070
https://hal.archives-ouvertes.fr/hal-00404070

Submitted on 21 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation of Eikonal Equation over Weighted Graphs
Vinh Thong Ta, Abderrahim Elmoataz, Olivier Lezoray

To cite this version:
Vinh Thong Ta, Abderrahim Elmoataz, Olivier Lezoray. Adaptation of Eikonal Equation over
Weighted Graphs. 2nd International Conference on Scale Space and Variational Methods in Computer
Vision (SSVM 09), 2009, Voss, Norway. LNCS (5567), pp.187-199, 2009, <10.1007/978-3-642-02256-
2_16>. <hal-00404070>

https://hal.archives-ouvertes.fr/hal-00404070
https://hal.archives-ouvertes.fr


Adaptation of Eikonal Equation over Weighted

Graph

Vinh-Thong Ta, Abderrahim Elmoataz, and Olivier Lézoray
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Abstract. In this paper, an adaptation of the eikonal equation is pro-
posed by considering the latter on weighted graphs of arbitrary structure.
This novel approach is based on a family of discrete morphological local
and nonlocal gradients expressed by partial difference equations (PdEs).
Our formulation of the eikonal equation on weighted graphs generalizes
local and nonlocal configurations in the context of image processing and
extends this equation for the processing of any unorganized high dimen-
sional discrete data that can be represented by a graph. Our approach
leads to a unified formulation for image segmentation and high dimen-
sional irregular data processing.

1 Introduction

Solutions of the nonlinear eikonal equation have found numerous applications.
One can quote for instance, geometric optics, image analysis or computer vi-
sion including shape from shading [1, 2], median axis or skeleton extraction [3],
topographic segmentation (watershed) [4] or geodesic distance computation on
discrete and parametric surfaces [5–9]. The latter works consider both structured
and unstructured meshes on cartesian or non-cartesian domains.

The eikonal equation is a special case of the following general continuous
Hamilton-Jabobi equation:

{

H(x, f,∇f) = 0 x∈Ω ⊂ IRn

f(x) = φ(x) x∈Γ ⊂ Ω
, (1)

where φ in the boundary condition is a positive speed function defined on Ω and
f(x) is the traveling time or distance from source Γ . Then, the eikonal equation
can be expressed by using the following Hamiltonian:

H(x, f,∇f) = ‖∇f(x)‖ − P (x) , (2)

where P (x) is a given potential function. Solution of (1) represents the shortest
distance from x to the zero distance curve given by Γ (where φ(x)=0).

Solutions of (2) are usually based on a discretization of the Hamiltonian
where the approximation of the derivatives is performed by the Godunov [10]



or the Lax-Friedrich [11] schemes. Then, many numerical methods have been
proposed and investigated to solve the nonlinear system described by (2). For
instance, one can quote the following schemes. (i) An iterative scheme [1] relying
on fixed point methods that solves a quadratic equation was proposed. (ii) The
fast sweeping methods [12] that use Gauss-Seidel type of iterations to update the
distance function field. The key point of fast sweeping is to update the points in
a certain order. (iii) Tsitsiklis [13] was the first to develop a Dijkstra like method
and proposed an optimal algorithm for solving the eikonal equation. Based on
this idea, [14, 11] produced the fast marching methods.

Another approach to solve (2) is to consider a time dependent version of the
equation and to evolve it to the steady state. Then, (2) can be rewritten as











∂f(x, t)/∂t = −‖∇f(x)‖ + P (x) x∈Ω ⊂ IRn

f(x, t) = φ(x) x∈Γ ⊂ IRn

f(x, 0) = φ0(x) x∈Ω

. (3)

This paper only considers the discrete analogue of the time dependent formu-
lation of the eikonal equation but, in future works, the stationary case (time
independent) will be also considered.

Contributions. In this work, we propose an adaptation of (3) over weighted
graphs of the arbitrary structure. The goal here is to provide a simple and
common formulation that solves the eikonal equation for any discrete data that
can be represented by a weighted graph such as images or high dimensional data
defined on irregular domains. This alternative formulation for solving the eikonal
equation is based on partial difference equations (PdEs) and discrete gradients
over weighted graphs.

Our formulation has several advantages. Any discrete domain that can be
described by a graph can be considered without any spatial discretization. In
the context of image processing, local and nonlocal configurations are directly
enabled within a same formulation. Finally, the aim of this paper is not to solve
a particular application with the eikonal equation but to show the potentialities
of our proposition to address image segmentation, data clustering or distance
computation.

Paper Organization. The paper is organized as follows. Section 2 recalls ba-
sics, definitions and operators on weighted graphs. Section 3 introduces our for-
mulation for solving the eikonal equation. Section 4 shows the potentialities of
our proposition for the segmentation of images and unorganized data processing.
Finally, last Section concludes.

2 Discrete Derivatives on Weighted Graphs

This Section recalls basics, definitions, operators and processes on weighted
graphs.



2.1 Definitions and Weighted Graphs Construction

Notations and Definitions. We consider the general situation where any dis-
crete domain can be viewed as a weighted graph. Let G=(V, E, w) be a weighted
graph composed of two finites sets: vertices V and weighted edges E⊆V ×V . An
edge (u, v)∈E connects two adjacent (neighbor) vertices u and v . The neighbor-
hood of a vertex u is noted N(u)={v∈V \{u} : (u, v)∈E}. The weight ωuv of an
edge (u, v) can be defined with a function w:V ×V →IR+ such that w(u, v)=ωuv

if (u, v)∈E and w(u, v)=0 otherwise. Graphs are assumed to be simple, con-
nected and undirected implying that function w is symmetric. Let f :V →IR be a
discrete real-valued function that assigns a real value f(u) to each vertex u∈V .
We denote by H(V ) the Hilbert space of such functions defined on V .

Weighted Graphs Construction. Any discrete domain can be represented
by a weighted graph where functions of H(V ) represents the data to process. In
the general case, an unorganized set of points V ⊂IRn can be seen as a function
f0:V ⊂IRn→IRn. Then, constructing a graph from this data consists in defining
the set of edges E by modeling the neighborhood. It is based on a similarity
relationship between data with a pairwise distance measure µ:V ×V →IR+. There
exists several methods to transform a set of vertices V into a neighborhood
(similarity) graph (see [15] for a survey on proximity and neighborhood graphs).
In this paper, we focus on two particular graphs: the τ -neighborhood graphs
and a modified version of k-nearest neighbors graphs. The k nearest neighbors
graph, noted k-NNG is a weighted graph where each vertex u∈V is connected
to its k nearest neighbors which have the smallest distance measure towards u
according to function µ. Since this graph is directed, a modified version of this
graph is used to make it undirected. The τ -neighborhood graph, noted Gτ is a
weighted graph where the τ -neighborhood Nτ for a given vertex u∈V is defined
as Nτ (u)={v∈V \{u} : µ(u, v)≤τ} with τ>0 a threshold parameter.

2D images can be viewed as functions f0:V ⊂ZZ2→IRn. In this case, the asso-
ciated distance µ for construct the neighborhood graph is usually the city block
or the Chebychev distances computed with the spatial coordinates of each ver-
tex representing an image pixel. With these distances and the τ -neighborhood
graphs, one recovers the two usual graphs used in image processing, the 4-
adjacency grid graph (denoted G0 with the city block distance) and the 8-
adjacency grid graph (denoted G1 with the Chebychev distance) with τ≤1. An-
other useful graph structure in image processing is the region adjacency graph
(RAG) where vertices correspond to image regions, and the set of edges is ob-
tained by considering an adjacency distance. With the τ -neighborhood (τ=1),
the RAG is the Delaunay graph of an image partition.

Weights Computation. Similarities between data can be incorporated within
edges’ weights according to a measure of similarity g:E→IR+ with w(u, v)=g(u, v)
for (u, v)∈E. Then, the distance computation between data is performed by com-
paring their features that generally depend on a given initial function f0∈H(V ).
To this aim, each vertex u∈V is assigned with a feature vector F (f0, u)∈IRm.



With F , the following weight functions can be considered. For a given edge
(u, v)∈E and a distance measure ρ:V ×V →IR+ associated to F , we can have

g0(u, v) = 1 (constant weight case) ,

g1(u, v) = (ρ(F (f0, u), F (f0, v)) + ǫ)−1 with ǫ>0, ǫ→0 ,

g2(u, v) = exp(−ρ(F (f0, u), F (f0, v))2/σ2) with σ>0 ,

where σ controls the similarity and ρ is usually the euclidean distance.
Several choices for the expression of F can be considered depending on the

features to preserve. The simplest one is F (f0, .)=f0. In the context of image
processing, an important feature vector F is provided by images patches i.e.
F (f0, u)=Fτ (f0, u)={f0(v) : v∈Nτ (u) ∪ {u}}. In the case of a grayscale image
Fτ (f0, .) is a vector of size (2τ+1)2 corresponding to the values of f0 in a square
window of size (2τ+1)×(2τ+1) centered at vertex u (a pixel). Color images can
be handled using features of dimension 3×(2τ+1)2. Then, the resultant weight
function directly incorporates local or nonlocal features [16]. This feature vector
has been proposed in the context of texture synthesis [17], and further used in
the context of image processing [18, 19].

2.2 Graph Based Discrete Gradients

Let G=(V, E, w) be a weighted graph. The discrete weighted gradient of a func-
tion f∈H(V ) at a vertex u∈V is defined by

(∇wf)(u) = (∂vf(u))(u,v)∈E

where ∂vf(u)=
√

w(u, v)(f(v)−f(u)) corresponds to the discrete (partial) deriva-
tive of f with respect to the edge (u, v). These definitions have been used by [20]
for image and mesh regularization. Based on the latter works, two discrete for-
mulations of weighted morphological gradients on graphs have been proposed
by [21]: namely, the weighted external ∇+

w and the internal ∇−
w gradient opera-

tors. For u∈V

(∇+
wf)(u) = (∂+

v f(u))(u,v)∈E and (∇−
wf)(u) = (∂−

v f(u))(u,v)∈E , (4)

where the external ∂+
v f(u) and the internal ∂−

v f(u) discrete partial derivatives
are

∂+
v f(u) = max(0, ∂vf(u)) and ∂−

v f(u) = −min(0, ∂vf(u)) ,

with ∂−
v f(u)=∂+

u f(v). When the weight is constant (w=g0) these definitions
recover the classical directional derivative operators.

The Lp-norm (with 0<p<+∞) and the L∞-norm of gradients (4) are

‖(∇±
wf)(u)‖p =

[

∑

v∼u

w(u, v)p/2|(f(v)−f(u))±|p
]1/p

and (5)

‖(∇±
wf)(u)‖∞ = max

v∼u

(

w(u, v)1/2|(f(v)−f(u))±|
)

. (6)



Notation v∼u means that vertex v is adjacent to u. ∇±
w refers to both exter-

nal and internal gradient (with respect to the sign) and (a)+=max(0, a) and
(a)−=min(0, a). These gradients have the following property: ‖(∇wf)(u)‖p

p =
‖(∇+

wf)(u)‖p
p +‖(∇−

wf)(u)‖p
p with 0<p<+∞. Moreover, with a constant weight

function and p=∞, (6) recovers the usual expression of algebraic morphological
external and internal gradients.

Associated Dilation and Erosion Processes. Continuous morphology (see
[22] and references therein) defines flat dilation δ : IRn → IRn and erosion
ε : IRn → IRn of a given function f :IRn→IR by a structuring set B={x∈IRn :
‖x‖p≤1} with the following general partial differential equations (PDEs):

∂δ(f)

∂t
= ∂tf = +‖∇f‖p and

∂ε(f)

∂t
= ∂tf = −‖∇f‖p . (7)

Ta et al. [21] has proposed a discrete version over graphs of these equations
by using morphological gradients (4). Given a graph G=(V, E, w), a function
f∈H(V ) and for all u∈V , discrete analogue of (7) are

∂δ(f(u))

∂t
=∂tf(u)=+‖(∇+

wf)(u)‖p and
∂ε(f(u))

∂t
=∂tf(u)=−‖(∇−

wf)(u)‖p .

(8)
Equations (8) correspond to dilation and erosion over weighted graphs. They
constitute a morphological framework [21] based on PdEs that extends algebraic
and continuous morphological operators for images and high dimensional data
processing.

3 Eikonal Equation on Weighted Graphs

In this Section, we present our formulation to approximate the eikonal equation
(3) over weighted graphs by considering PdEs and the morphological gradients
presented in the previous Section.

With morphological processes described by (8), the time dependent eikonal
formulation (3) can be viewed as an erosion process regarding the minus sign
and a null potential function P . With the corresponding internal gradient (∇−

w)
involved in discrete PdEs based erosion process, (3) can be directly rewritten
with weighted graphs. Given a graph G=(V, E, w) and a function f∈H(V ), we
obtain a discrete PdEs based version of the system (3)











∂f(u, t)/∂t = −‖∇−
wf(u)‖p + P (u) u∈V

f(u, t)=φ(u) u∈V0 ⊂ V

f(u, 0)=φ0(u) u∈V

,

where V0 corresponds to the initial seed vertices.
With fn(u) ≈ f(u, n∆t), this iterative numerical scheme is obtained for all

u∈V :
fn+1(u)=fn(u) − ∆t

(

‖(∇−
wfn)(u)‖p − P (u)

)

. (9)



The steady state (i.e. given a fixed number n of iteration or when ‖fn+1−fn‖ <

ǫ) of this process is the solution of the eikonal equation (2).
Injecting the corresponding internal gradient norm in (9), we obtain for the

Lp-norm (5) and the L∞-norm (6)

fn+1(u)=fn(u) − ∆t
(

[

∑

v∼u

w(u, v)p/2|min(0, f(v)−f(u))|p
]1/p

− P (u)
)

, (10)

fn+1(u)=fn(u) − ∆t
(

max
v∼u

(

w(u, v)1/2|min(0, f(v)−f(u))|
)

− P (u)
)

. (11)

The proposed methodology leads to a simple and common formulation that con-
stitutes an adaptative framework for the eikonal equation. Indeed, our approach
only depends on the p value and the weight function w. In Sect. 4, experiments
show how the framework can be adapted to address image segmentation or data
clustering.

Relations with other schemes. Scheme (9) has the advantage to work on any
graph structures. Then, with an adapted graph topology and an appropriated
weight function, the proposed formulation is linked to well-known schemes such
as Osher-Sethian Hamiltonian discretization scheme or the graph based Dikjstra
algorithm.

Osher-Sethian scheme. Let G0=(V, E, g0) be an unweighted 4-adjacency grid
graph associated with an image. Then, (10) recovers the exact Osher-Sethian
upwind first order Hamiltonian discretization scheme [14] when p=2 and using
G0:

fn+1(u)=fn(u) − ∆t
(

[

∑

v∼u

|min(0, f(v)−f(u))|2
]1/2

− P (u)
)

.

Replacing vertices u∈V and their neighborhood by their spatial coordinates
(x, y), the latter expression can be rewritten as

fn+1((x, y))=fn((x, y))−∆t
[

(

|min
(

0, fn((x, y))−fn((x−1, y))
)∣

∣

2

+|max
(

0, fn((x+1, y))−fn((x, y))
)
∣

∣

2

+|min
(

0, fn((x, y))−fn((x, y−1))
)∣

∣

2

+|max
(

0, fn((x, y+1))−fn((x, y))
)∣

∣

2)1/2
− P ((x, y))

]

,

since min(0, a−b)2= max(0, b−a)2. This equation corresponds to the discretiza-
tion scheme of the Hamilton-Jacobi equations proposed by [14].

Dikjstra scheme. Let G=(V, E, g0) be an unweighted graph. Then, (11) cor-
responds to an iterative version of the Dikjstra shortest path algorithm defined
on graphs of arbitrary structure. Indeed, in the case where p=∞, ∆t=1 and with
G, (11) becomes, for all u∈V

fn+1(u) = fn(u) − max
v∼u

(

|min(0, f(v)−f(u))|
)

+ P (u) = min
v∼u

(fn(v)) + P (u) ,



by considering the neighborhood of u as N(u)∪{u} and with the properties that
max(0, a−b)= − min(0, b−a) and min(0, a−b)= min(a, b)−b. This equation cor-
responds to a shortest path algorithm for a given graph where at each step, the
distance f(u) at vertex u corresponds to the minimal distance in its neighbor-
hood.

4 Experiments

The proposed formulation of the eikonal equation and can be used to process
any function defined on vertices of a graph or on any arbitrary discrete domain.
This Section illustrates the potentialities of our formulation through examples
of weighted distance computation, image segmentation and unorganized high di-
mensional data processing. Different graph structures and weight functions are
also used to show the flexibility of our approach. In the sequel, all experiments
are obtained with a constant potential function P=1. Clearly, a different po-
tential function can be adapted for a particular application. The objective of
the following experiments is not to solve a particular application. They only
illustrate the potential and the behavior of our eikonal equation formulation.

Adaptative Front Propagation and Weighted Distances. Figure 1 shows
the adaptivity of our formulation in order to compute weighted distances. In-
deed, this example shows results for different p values, graph topologies, weight
functions and features F . The initial seed is located at the top left corner of
the original grayscale image f0:H(V )→IR. First, second and third rows of Fig. 1
show results for p=2, 1 and ∞ respectively, where (10) and (11) are used. All the
results correspond to color distance maps (red for small and blue for large dis-
tances) where iso-levels sets are superimposed in white. First and second columns
of Fig. 1 show results obtained with unweighted (w=g0) graphs. First column
uses a 4-adjacency grid graph (G0) and corresponds to the classical case. Second
column uses a 25-adjacency grid graph (G2) and shows the effect of a larger
neighborhood. Third and fourth columns show results obtained with weighted
graphs. Third column considers graph G0 weighted by function g2 with F=f0.
By using non constant weights, image information is automatically integrated
in the distance computation that modifies the front evolution speed particularly
into the textured sub-image. Fourth column shows the nonlocal case where graph
G2 is constructed and weighted with function g2 associated with patches of size
11×11. In that case, repetitive information are clearly captured by the weights
that stops the front propagation around the textured sub-image. Finally, seg-
mentation of the textured sub-image can be simply obtained by thresholding the
computed distances.

Image Segmentation with Region Based Graphs. The goal of the follow-
ing two examples is not to show a perfect segmentation but to show how we
can take advantage of graph topologies in image segmentation. The basic idea
is to consider that image pixels are not the only relevant components in image



Original G0, w=g0 G2, w=g0 G0, w=g2 G2, w=g2

f0:H(v)→IR F=f0 F=F5(f
0, .)

p=1

p=2

p=∞

Fig. 1. Front propagation and weighted distances with different p values, graph configurations G,
weights w and features F . Figures represent color distance maps with iso-level sets obtained by
thresholding the distances. The seed is located at the top left corner (see text for more details).

and more abstract elements such as image regions can be used. Hence, we sug-
gest to work directly with a reduced version of images: image partitions. Image
partitions can be obtained by image pre-processing methods such as watershed.
Figures 2(b) and 3(b) show such partitions computed from Figs. 2(a) and 3(a).
Figures 2(c) and 3(c) are reconstructed images from partitions with the mean
color value for each region.

Figure 2 presents an example of image segmentation based on RAG and also
shows that this graph structure can accelerate segmentation processes. This ex-
ample compares segmentation obtained by a 4-adjacency grid graph G0 weighted
by function g2 with pixel grayscale values (Fig. 2(d)) and segmentation result
with a RAG constructed from partition (Fig. 2(b)) and weighted by function g2

with mean values (Fig. 2(e)). Color distance maps are obtained with the initial
seeds (white points) in Fig. 2(a). Segmentations are performed by thresholding
the obtained distances. Results show similar behaviors both on distance maps
and segmentations while drastically speeding-up the segmentation process in the
RAG case. Indeed, the number of vertices in the RAG represents approximatively
3% as compared to the number of vertices in the pixel based graph. The direct
consequence is a decreasing of the computational complexity thanks to the re-
duced amount of data to consider. On a standard computer the computing time
can be decreased by a 10 factor.

Figure 3 shows another benefit of using a RAG structure: nonlocal (non spa-
tially connected) object segmentation. This experiment compares segmentation
results with RAG (Fig. 3(d)) and nonlocal RAG (Fig. 3(e)). Both graphs are
computed from partition 3(b) weighted by function g2 with mean color values.



(a) Original and seeds
(white)

(b) Partition (97% of
reduction)

(c) Reconstructed im-
age

(d) Grid graph G0, w=g2 (e) RAG, w=g2

Fig. 2. Acceleration of image segmentation process. (a) original image (150×235) with 35 250 pixels.
(b) partition with 999 regions (97% of reduction in terms of image components). (c) reconstructed
image with mean color value. (d) and (e): at left, distance color maps (red for small and blue for
large distances) and at right, final segmentations. Images (d) are obtained with a pixel based graph
computed from (a). Images (e) are obtained with a RAG constructed with (b) and (c) (see text for
more details).

(a) Original and seeds
(white)

(b) Partition (98% of re-
duction)

(c) Reconstructed image

(d) RAG, w=g2 (e) RAG∪5-KNNG,w=g2

Fig. 3. Nonlocal region based image segmentation. (a) original image (256×256) with 65 536 pixels.
(b) partition with 1 324 regions (98% of reduction as compared to original one). (d) and (e) at left,
distance color maps (red for small and blue for large distances) and at right, final segmentations.
Graphs used in (d) and (e) are computed from (b) and (c) (see text for more details).

In nonlocal RAG case, each vertex neighborhood is extended by a 5 nearest
neighborhood based on mean value feature. The obtained graph is a RAG∪5-
NNG graph. Figures 3(d) and 3(e) show color distance maps computed from
initial seeds (white stroke) in Fig. 3(a) and final segmentations. For local case



(Fig. 3(d)), object marked by seeds is well segmented with respect to close dis-
tances (red color). The other objects are far (blue color) and the final segmen-
tation only extracts the marked one. For nonlocal case (Fig. 3(e)), the distance
within the marked object is close to the initial seeds. In addition the distances to
other triangles in the scene are also computed as close to seeds (red color). The
consequence is that all the objects in the image are extracted by thresholding
even if they are not spatially close with a minimal number of initial seeds.

Unorganized High Dimensional Data Processing The following experi-
ments show applications of our formulation of the eikonal equation for the pro-
cessing of high dimensional data in irregular domains. Figure 4 shows applica-
tions of the eikonal equation for data clustering and shortest path problems.
The initial data set (Fig. 4(a)) is constituted of 133 images of head pose. Each
image is of size 29×29. From this data set, two possible applications can be
performed: clustering and head pose transition estimation. The goal here is not
to solve machine leaning problems, but to show that these problems can be ad-
dressed by our formulation of eikonal equation. In order to process such data,
a graph (|V |=133) is constructed where each vertex represents an image and is
described by a feature of size 29×29 (i.e IR841). In the following results, initial
seeds (images) are represented with white boundaries. Points that are close and
far to seeds are respectively represented with blue and red colors in distance
maps (Fig. 4(b) and 4(c)).

Figures 4(b) and 4(d) show the application of the eikonal equation for data
clustering. Such an application can be used for data set exploration or semi-
supervised learning: given an input seed (query) one wants to obtained the closest
points with respect to the initial input. Figure 4(b) shows the distance map
obtained from a single initial seed. Figure 4(d) shows clustering results. Initial
input has a white boundary. The 10 closest images are located at the top and
the 10 farthest are located at the bottom of Fig. 4(d).

Figures 4(c) and 4(e) shows another example of application of the eikonal
equation for data set. Given two initial images, one wants to recover a transition
sequence of images that separates them. This problem can be viewed as a shortest
path problem solved by the eikonal equation. Figure 4(c) shows the distance map
obtained from the initial seeds. Figure 4(e) shows the obtained path from seed
at top left to seed at bottom right.

These experiments show satisfying results and the ability of our approach to
address machine learning problems even if a simple euclidean distance is used
to compare data points. Clearly, results can be improved by using well adapted
distances or features estimation.

5 Conclusion

In this paper, a discrete version of the eikonal equation over weighted graphs
of arbitrary structure is proposed. Solution of the eikonal equation based on
PdEs, discrete gradients and weighted graphs is presented. The proposed for-
mulation constitutes a simple, common and adaptative framework that recovers



(a) Original data, 133 images of size 29×29 (|V |=133, f0 : V →
IR841)

(b) Color distance map+seed (white boundaries) (c) Color distance map+seeds (white boundaries)

(d) Local clustering with (b) (e) Shortest path with (c)

Fig. 4. High dimensional data clustering and shortest path. (b) and (c) color distance maps (blue
for small and red for large distance) images superimposed with white boundaries are initial seeds.
(d) clustering results where at top the 10 closest and at bottom the 10 farthest with respect to the
seed (white boundary). (e) shortest path from the two initial seeds (white boundary).

well-known definitions and unifies local and nonlocal configurations in the con-
text of image processing. This framework can consider any discrete data that can
be represented by weighted graphs. Through experiments, we have shown the
potentiality and the flexibility of our approach to address image segmentation
and unorganized high dimensional data processing. Finally, an ongoing work is to
address the stationary (time independent) version of the eikonal equation and
to solve this equation by considering fast marching like methods on arbitrary
graphs within our framework.
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