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Abstract

In this paper, a novel approach to Mathemati-
cal Morphology operations is proposed. Morpholog-
ical operators based on partial differential equations
(PDEs) are extended to weighted graphs of the arbi-
trary topologies by considering partial difference equa-
tions. We focus on a general class of morphological
filters, the levelings; and propose a novel approach of
such filters. Indeed, our methodology recovers classical
local PDEs-based levelings in image processing, gener-
alizes them to nonlocal configurations and extends them
to process any discrete data that can be represented by
a graph. Experimental results show applications and
the potential of our levelings to textured image process-
ing, region adjacency graph based multiscale leveling
and unorganized data set filtering.

1. Introduction

Mathematical Morphology (MM) operations mod-
eled by partial differential equations (PDEs) have
shown their efficiency and their flexibility to address
several tasks in computer vision [1, 5]. The two
fundamental MM operators are dilation and erosion.
Given a symmetric unit disc β :=

{
z ∈R2:

∣∣z∣∣
2
≤ 1

}
,

the multiscale flat dilation δ and erosion ε of an image
f 0: Ω⊂R2→R are generated by the following PDEs:
δt(f) =+

∣∣∇f
∣∣
2

and εt(f) =−
∣∣∇f

∣∣
2

where ∇ is the
spatial gradient operator and f the transformed version
of f 0. Based on such basic operations, Maragos [6]
defines a PDEs-based general class of morphological
filters, the levelings which include the reconstruction
openings and closings. Let f 0 be an initial function and
m a marker function, the PDE generating levelings is
∂f/∂t =sgn(f 0−f)

∣∣∇f
∣∣
2

where sgn is the sign func-
tion and f =m at t =0 is the initial condition. This

class of morphological filters have found many appli-
cations for image enhancement, simplification or seg-
mentation. Such PDEs-based methods have the advan-
tages of better mathematical modeling, more connec-
tions with physics, better geometry approximation and
subpixel accuracy. Nevertheless, these methods have
several drawbacks. First, their numerical algorithms re-
quire a careful choice of spatial discretization which is
difficult for high dimensional data or irregular domains.
Second, these approaches only consider local deriva-
tives while nonlocal schemes have recently shown their
effectiveness for image processing [3, 2, 4]. Finally,
MM is a well known method for binary and grayscale
image but there exist no general extension for multivari-
ate high dimensional data processing.

Paper contribution. From the works investigated
in [3], we propose a novel approach to MM operations
by extending PDEs-based methods to nonlocal discrete
schemes over weighted graphs. To this aim, we in-
troduce nonlocal discrete derivatives and partial differ-
ence equations over graphs. Thus, our graph-based MM
framework recovers local PDEs-based approaches, gen-
eralizes them for nonlocal configurations and extends
them to process any discrete data that can be repre-
sented by a weighted graph without any spatial dis-
cretization. In this paper, we focus on the case of lev-
elings defined within our framework and show the ap-
plications and the benefits of such novel morphological
filters for image and unorganized discrete data process-
ing.

2. Nonlocal dilation and erosion

This Section recalls notations on graphs; introduces
our nonlocal morphological graph-based framework
and defines a family of dilation and erosion processes
based on nonlocal gradients over graphs.

Weighted graphs. We consider that any discre-



te domain can be represented by a weighted graph
G =(V,E, w) composed of a set of vertices V , a set
of edges E⊆V×V , and a weight function w:V→R+.
An edge of E which connects two adjacent vertices u
and v is noted uv. In this work, G is considered as sim-
ple, connected and undirected. This implies that w is
symmetric: wuv =wvu if uv ∈E. We assume that any
function f :V→R with f ∈H(V ) assigns a real value
f(u) for each u∈V , where H(V ) is the Hilbert space
of real valued functions defined on V .

Nonlocal discrete gradient operators. From the
operators defined in [3], the directional derivative of
a function f :V→R defined at vertex u along an edge
uv ∈E is ∂vf(u) =w1/2

uv

(
f(v)−f(u)

)
. With this def-

inition, we obtain two other derivatives based on min
and max operators,

∂+
v f(u)=w1/2

uv max
(
0,f(v)−f(u)

)
and

∂−v f(u)=w1/2
uv min

(
0,f(v)−f(u)

)
.

(1)

The weighted gradient operators of f at u∈V , for each
derivatives from definitions (1), are defined by

∇±wf(u):=
(
∂±v f(u):u∼v

)T
∀uv ∈E , (2)

where u∼v means that vertex v is adjacent to u, and
∇+

wf (resp. ∇−wf ) is defined with ∂+
v f (resp. ∂−v f ).

To compute these gradient norms, the Lp-norm is used.
From definition (2), for u∈V and 0 < p < +∞, it
leads to ∣∣∇±wf(u)

∣∣
p
=

[ P
u∼v

∣∣∂±v f(u)
∣∣p

]1/p

. (3)

Dilation and erosion processes. We define a dis-
crete analogue of the continuous PDEs-based dilation
and erosion formulations of a function f ∈H(V ). To
this aim, we define the notion of graph boundary. Let
A⊂V be a set of connected vertices. For a given vertex
u∈V , we denote by ∂+A=

{
u∈Ac: ∃ v ∈A, v∼u

}
and ∂−A=

{
u∈A:∃ v ∈Ac, v∼u

}
, respectively the

outer and the inner boundaries of A. Ac is the com-
plement of A. Then, dilation over A is a growth process
that adds vertices from ∂+A to A. By duality, erosion is
a contraction process that removes vertices from ∂−A.
This property can be demonstrated by using levels sets
decomposition of f [8]. A variational definition of dila-
tion (resp. erosion) process can be interpreted as maxi-
mizing (resp. minimizing) a surface gain proportionally
to +

∣∣∇+
wf

∣∣
p

(resp. −
∣∣∇−wf

∣∣
p
). Over a graph G, these

processes lead to a family of p-dilation and p-erosion
parameterized by p and w. For 0 < p < +∞ they are
defined by,

δp,t:= ∂f/∂t=+
∣∣∇+

wf
∣∣

p
and εp,t:= ∂f/∂t=−

∣∣∇−wf
∣∣

p
,

(4)

where t corresponds to an artificial time parameter. To
solve equations in (4), on the contrary to the PDEs case,
no spatial discretization is needed thanks to derivatives
directly expressed in a discrete form. With the con-
ventional notation fn≈f(u, n∆t), one obtains the fol-
lowing iterative algorithm for p-dilation and p-erosion
of an initial function f 0 ∈H(V ). For all u∈V and
0 < p < +∞,{

fn+1(u)=fn(u)±∆t
[ P

u∼v
w1/2

uv

∣∣M±(
0,fn(v)−fn(u)

)∣∣
p

]1/p

f(0)(u)=f0(u)

(5)
where n is the iteration step. The plus (resp. minus) sign
corresponds to p-dilation (resp. p-erosion) and one uses
the M+=max (resp. M−=min) operator.

Local and nonlocal configurations. One can note
that Algorithm (5) enables local and nonlocal configura-
tions. Indeed, the choice of the graph topology models
local or nonlocal interactions between data. These inter-
actions are directly integrated into edge weights by the
associated weight function w [3]. Then, adaptive oper-
ations are naturally expressed by both weight function
and graph topology. Fig. 1 illustrates this behavior. It

(a) original (b) unweighted (c) weighted (d) nonlocal + patch

Figure 1. Adaptive dilation of a pulse cen-
tered on the image

shows a p-dilation (p=2) of a pulse located on the center
of a scalar grayscale image f 0:V ⊂R2→R. Results are
obtained with Algorithm (5) where the edge weights are
computed from original image (Fig. 1(a)). In Figs. 1(b)
and 1(c), the considered graph is a 4-adjacency grid
graph where each vertex corresponds to an image pixel.
In Fig. 1(b), the graph is unweighted, wuv=1; whereas
in Fig. 1(c), wuv=exp

(
−

∣∣f(u)−f(v)
∣∣2/σ2

)
. Fig. 1(d)

shows a dilation obtained with a nonlocal k-Nearest
Neighbors (k-NN) graph based on patch distance. In
this case, each vertex u∈V is defined by a feature
vector F (f 0,u)=

[
f 0(v): v ∈Bu,s

]T
, where Bu,s is a

bounding box of size s centered on u. It defines a
patch of size (2s+1)×(2s+1). Then, the patch dis-
tance between two vertices u and v is computed by the
Euclidean distance weighted by a Gaussian kernel. In
Fig. 1(d), k is equal to 10, patch size is 7×7 and search
window size is 21×21 to select the k nearest neighbors.
Results show the benefits of weights to preserve image



features, while a nonlocal patch-based approach better
detect fine and repetitive image structures.

3. Nonlocal levelings for discrete data

Levelings are a general class of morphological fil-
ters. A particular case of such filters is reconstruction
openings and closings [6]. In this Section, by using
previous definitions, we define the discrete analogue
of PDEs-based morphological levelings over graphs
of the arbitrary topologies. Consider an initial func-
tion f 0 ∈H(V ) and a marker function m∈H(V ) from
which a leveling can be produced. Then, the general
leveling of f with respect to the marker m is computed
by the following process. For u∈V and sgn the sign
function, 8><>:

∂f(u)
∂t = sgn

(
f0(u)−f(u)

)∣∣∇±wf(u)
∣∣

p

f(u) = m(u) at t=0 .
(6)

When sgn
(
f 0(u)−f(u)

)
is equal to +1 (resp. −1) then

Eq. (6) corresponds to a p-dilation (resp. p-erosion).
One uses ∇+

wf (resp. ∇−wf ) with the corresponding Al-
gorithm (5) to solve the leveling process. One can re-
mark that for the case where p = 2, w = 1 with a 4-
adjacency grid graph, from Eq. (6) and Algorithm (5),
one obtains exactly the leveling numerical scheme pro-
posed by [6] in the context of image processing.

Our methodology provides a novel approach of mor-
phological levelings and has several advantages. No
spatial discretization is needed contrary to the contin-
uous case. The choice of the graph topology provides
a natural adaptive scheme. The same scheme works on
graphs of the arbitrary topologies i.e. we can process in
the same way any discrete data that can be represented
by a graph. In the latter, we show several applications
of the proposed leveling for image and unorganized data
processing. The main purpose of the following exper-
iments is not to solve a particular image processing or
data analysis problems but only to illustrate the poten-
tial of our method to address several problems.

For simplicity, we restrict ourselves to use Eq. (6)
for the case of p = 2. The proposed levelings can be
used to treat any function f 0:V ⊂Rn→Rq. The level-
ing of vector-valued functions is performed as follows.
For all u∈V , we define f 0(u):

[
f 0

i , . . . , f 0
q

]T
, where

f 0
i (u):V→R is the ith component of f 0(u). Then, the

levelings of vector-valued functions consist in q inde-
pendent schemes where the weight function acts as a
coupling term.

Unorganized data levelings. One of the advantages
of the proposed method is: any discrete data that can
be represented by a graph can be addressed. In particu-
lar, it permits to consider multivariate unorganized data
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Figure 2. Unorganized data set leveling

set and open a novel field of application of morpholog-
ical filters. Fig. 2 shows an example of unorganized
data leveling. Original data consists in two noisy gaus-
sians (Fig. 2(a)) over which an 8-NN graph is computed
(Fig. 2(b)). Marker function (Fig. 2(c)) is obtained by
a discrete linear diffusion filtering as in [3]. Fig. 2(d)
shows the leveling result with respect to the marker.
One can observe the filtering effect of the leveling: main
data structures are recovered during the reconstruction
and, extremum and outliers data have been filtered.

Fast multiscale RAG levelings. Our morphologi-
cal framework works on graphs of the arbitrary topolo-
gies. It permits to consider other image representations
and to use more high level structures, such as image re-
gions, rather than image pixels. For instance, one can
use the image-based Region Adjacency Graph (RAG)
associated with a fine partition, where vertices repre-
sent regions and edges link adjacent regions. This graph
representation provides a fast scheme (due to the re-
duced number of data to consider) to perform several
tasks such as filtering [3] or image segmentation [7].
Maragos [6] shows that a multiscale leveling can be
produced from various markers. Fig. 3 shows an ex-
ample of analogue multiscale levelings but performed
on a RAG representation. Fig. 3(c) shows a recon-
structed image where each pixel value in the fine par-
tition (Fig. 3(b)) is replaced by its surrounding region
mean color value from the original image Fig. 3(a). One
can note the significant data reduction of the simplified
version as compared to the original one (87% in terms
of vertices). The RAG-based multiscale leveling is per-
formed with the two markers of Figs. 3(d) and 3(f).



(a) original: 65 536 pixels (b) 8 495 regions (c) reconstructed image

(d) marker 1 (e) leveling 1 (f) marker 2 (g) leveling 2

Figure 3. Fast multiscale RAG leveling

These markers are obtained by filtering the RAG us-
ing methods described in [3]. Figs. 3(e) and 3(g) show
the obtained levelings with respect to the corresponding
marker. Results show same behaviors as in pixel-based
case while drastically reducing computation complex-
ity. This multiscale RAG-based leveling can be viewed
as region merging and region filtering processes.

Nonlocal patch-based image levelings. Our mor-
phological framework enables nonlocal configurations.
It provides a novel approach to morphological level-
ings. Fig. 4 shows examples of local and nonlocal
patch-based levelings. Local levelings (Figs. 4(c) and
4(g)) are obtained by considering an unweighted 4-
adjacency grid graph. Nonlocal patch-based leveling
(Figs. 4(d) and 4(h)) are obtained with a k-NN graph
based on the patch distance, with a patch of size 7×7
and a 21×21 search window size to select the k = 10
nearest neighbors. Results are obtained with markers
shown in Fig. 4(b) and 4(f). One can note that nonlo-
cal patch-based approach better detect image frequent
and fine structures during the reconstruction process as
compared to the local one.

4. Conclusion

In this paper, a novel morphological framework with
partial difference equations over weighted graphs of the
arbitrary topologies has been proposed. This framework
generalizes PDEs-based methods to discrete local and
nonlocal schemes, extends them to the treatment of any
discrete data that can be represented by a graph. This
work has also focused on a general class of morpho-
logical filters, the levelings. Experiments have shown
novel aspects of such filters, the nonlocal patch-based
approach and applications on image-based RAG and
unorganized data set.

(a) original (b) marker (c) local (d) nonlocal + patch

(e) original (f) marker (g) local (h) nonlocal + patch

Figure 4. Nonlocal image leveling
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