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Abstract. Mathematical Morphology (MM) offers a wide range of op-
erators to address various image processing problems. These processing
can be defined in terms of algebraic set or as partial differential equations
(PDEs). In this paper, a novel approach is formalized as a framework of
partial difference equations (PdEs) on weighted graphs. We introduce
and analyze morphological operators in local and nonlocal configura-
tions. Our framework recovers classical local algebraic and PDEs-based
morphological methods in image processing context; generalizes them
for nonlocal configurations and extends them to the treatment of any
arbitrary discrete data that can be represented by a graph. It leads to
considering a new field of application of MM processing: the case of high-
dimensional multivariate unorganized data.

1 Introduction

Mathematical Morphology (MM) offers an important variety of tools in image
processing and computer vision. The two fundamental operators are dilation and
erosion.

In standard flat (algebraic) MM, these operations employ a so-called struc-
turing element B to process images. Dilation (δ) and erosion (ε) of an image, rep-
resented as a scalar function f0 : Ω ⊂ IR2 → IR, by a symmetric structuring ele-
ment B are defined as δ

(

f0 (xi, yi)
)

= max{f0 (xi + xj , yi + yj) : (xj , yj) ∈ B}
and ε

(

f0 (xi, yi)
)

= min{f0 (xi + xj , yi + yj) : (xj , yj) ∈ B}, with (xi, yi) ∈ Ω.
The combination of these two operators gives rise to a variety of other MM
operators; for instance opening, closing, top hats, reconstruction [1].

An alternative formulation, based on partial differential equations (PDEs),
was also proposed by [2–4] and references therein. PDEs-based approach gen-
erate flat dilation and erosion of a function f , by a unit ball B = {z ∈ IR2 :
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‖z‖p ≤ 1}, with the following diffusion equations: δt(f) = ∂tf = +‖∇f‖p and
εt(f) = ∂tf = −‖∇f‖p where ∇ = (∂x, ∂y)T is the spatial gradient opera-
tor, f is the transformed version of the image f0 and the initial condition is
f(x, y, 0) = f0(x, y, 0) at time t = 0. These PDEs produce continuous scale
morphology and have several advantages. They offer excellent results for non-
digitally scalable structuring elements whose shapes cannot be correctly repre-
sented on a discrete grid and they also allow sub-pixel accuracy. They can be
adaptive by introducing a local speed evolution term [5]. However, these meth-
ods have several drawbacks. The numerical discretization is difficult for high-
dimensional data or irregular domains. They only consider local interactions on
the data by using local derivatives while nonlocal schemes have recently received
a lot of attention [6–9]. Indeed, these latter works have shown their effectiveness
in many computer vision tasks. Moreover, MM is a well known and well docu-
mented approach for binary and grayscale images. Nevertheless, there no exist
general extension for the treatment of multivariate and high-dimensional data
sets. Several methods address this problem such as [10] but for the particular
case of tensor images or [11] for data set and cluster analysis. The latter approach
uses only binary MM and has the drawback that it requires the construction of
a regular discrete grid to perform MM processing. Inspired by previous work
in [9], we propose to consider MM processing over graphs. Graph morphology
was already defined in [12, 13] but, only algebraic MM operations and particu-
lar graphs (binary graph, minimum spanning tree) are considered. Our work is
different.
Contributions. We extend the PDEs-based MM operators to a discrete scheme
by considering partial difference equations (PdEs) over weighted graphs of the
arbitrary topologies. To this aim, nonlocal discrete derivatives on graphs are in-
troduced to transcribe MM processing based on the continuous PDEs to PdEs
over graphs. Our approach of MM operations has several advantages. Any dis-
crete domain that can be described by a graph can be considered without any
spatial discretization. Local and nonlocal processing are naturally and directly
enabled within a same formulation. These two points provides novel application
fields of MM operations such as unorganized high-dimensional data processing
and nonlocal MM processing for images.
Paper organization. Section 2 recalls some definitions and notations on graphs.
Section 3 introduces the family of weighted nonlocal dilation and erosion. The
potential of this framework is illustrated in Sect. 4, for the processing of unorga-
nized data and in the context for image processing, on Region Adjacency Graph
and textured images.

2 Mathematical Preliminaries on Graphs

2.1 Definitions and Notations

We consider any general discrete domain as a weighted graph. Let G = (V, E, w)
be a weighted graph composed of a finite set V of vertices, and a finite set
E ⊂ V ×V of weighted edges, and a weight function w : V ×V → IR+. An edge



of E, which connects two adjacent vertices u and v, is noted uv. In this paper,
graphs are assumed to be connected and undirected (see in [14] for more details).
This implies that the weight function w is symmetric, wuv=wvu, if uv ∈ E and
wuv=0 otherwise. Let H(V ) be the Hilbert space of real-valued functions on
the vertices. This space is endowed with the usual inner product. Each function
f : V →IR ∈ H(V ), assigns a real value f(u) to each vertex u ∈ V .
Graph construction. Any discrete domain can be modeled by a weighted
graph and by defining an initial function f0 : V → IR on the vertices. In image
processing, graphs are commonly used to represent digital images. In machine
learning community, they are usually used to represent data sets and their rela-
tions. Many typical structures can be quoted. (i) k-adjacency grid graphs [15]:
vertices represent pixels and edges represent local pixel adjacency relationship.
Two common graphs are the 4 and the 8-adjacency grid graph. (ii) Region
Adjacency Graphs (RAG) [16] that provide useful descriptions of the picture
structure: vertices represent image regions and edges represent region adjacency
relationship. (iii) Proximity graphs [17], for instance the k-Nearest Neighbors
graph (k-NN graph), where each vertex is associated with a set of k close vertices
depending on a similarity criterion. Constructing a graph consists in modeling
the neighborhood or the similarity relationship between data. This similarity
depends on a pairwise distance measure. Computing distances between data el-
ements consists in comparing their features that generally depend on the initial
function f0. To this aim, each vertex u ∈ V is assigned with a feature vector de-
noted by F (f0, u) ∈ IRn (several choices can be considered for the expression of
F and the simplest one is F (f0, u) = f0(u)). For an edge uv ∈ E, the following
standard weight function g : V ×V → IR+ can be used

g1(uv) =
(

ρ
(

F (f0, u), F (f0, v)
)

+ ǫ
)−1

, ǫ > 0, ǫ → 0 and

g2(uv) = exp
(

−ρ
(

F (f0, u), F (f0, v)
)2

/σ2
)

,

where σ controls the similarity and ρ : V ×V → IR+ is a distance measure. Then,
the choice of the graph topology enables several processing that model local or
nonlocal interactions between data (especially for the image processing context).
Both notions of local and nonlocal interactions are directly integrated into edges
weights by the associated weight function w. One has to note that both local
and nonlocal interactions are only expressed by the graph topology in terms of
neighborhood connectivity (see [9] for more details on these notions).

2.2 Discrete Derivatives and Gradient Operators

We introduce discrete operators definitions such as derivatives, gradient opera-
tors and its norms. These formulations constitute the basis of our morphological
operators framework.

We consider the directional derivative of a function f : V → IR ∈ H(V ) at
vertex u along an edge uv. Following the basic operator defined in [9], we have

∂f

∂(uv)

∣

∣

∣

∣

u

= ∂vf(u) = w1/2
uv

(

f(v) − f(u)
)

. (1)



This definition is consistent with the continuous definition of the derivative of a
function and satisfies the following properties: ∂vf(u) = −∂uf(v), ∂uf(u) = 0,
and if f(u) = f(v) then ∂vf(u) = 0. From (1), we introduce two other directional
derivatives based on min and max operators:

∂+
v f(u) = max

(

0, ∂vf(u)
)

and ∂−

v f(u) = min
(

0, ∂vf(u)
)

.

The weighted gradient operator of a function f ∈ H(V ) at vertex u ∈ V is the
vector of all partial derivatives with respect to the set of edges uv: (∇wf)(u) =
(∂vf(u))uv∈E . Then, with this definition one obtains:

(∇+
wf)(u) =

(

∂+
v f(u)

)

uv∈E
and (∇−

wf)(u) =
(

∂−

v f(u)
)

uv∈E
(2)

In the sequel, we use the Lp-norm of the two latter gradients defined in (2)

‖(∇+
wf)(u)‖p =

[

∑

v∼u

wp/2
uv

∣

∣max
(

0, f(v) − f(u)
)
∣

∣

p
]1/p

and

‖(∇−

wf)(u)‖p =
[

∑

v∼u

wp/2
uv

∣

∣min
(

0, f(v) − f(u)
)∣

∣

p
]1/p

;

(3)

and the L∞-norm

‖(∇+
wf)(u)‖∞ = max

v∼u

(√
wuv

∣

∣max
(

0, f(v) − f(u)
)∣

∣

)

and

‖(∇−

wf)(u)‖∞ = max
v∼u

(√
wuv

∣

∣min
(

0, f(v) − f(u)
)∣

∣

)

.
(4)

Similar definitions can be provided for the norm of the gradient ∇wf

3 PdEs for Morphology on Weighted Graphs: Dilation

and Erosion Processes

In this Section, we define the discrete analogue of the continuous PDEs-based
dilation and erosion formulations of a given function f ∈ H(V ). To this aim, we
use on the one hand, the decomposition of f into its level sets fk = H(f − k)
where H is the Heaviside function (a step function) and on the other hand, the
notion of graph boundary. Let G = (V, E, w) be a graph and let A be a set
of connected vertices with A ⊂ V i.e. for all u ∈ A, there exists v ∈ A such
that uv ∈ E. We denote by ∂+A and ∂−A respectively the outer and the inner
boundary sets of A in G. Then, for a given vertex u ∈ V :

∂+A =
{

u ∈ Ac : ∃v ∈ A, v ∼ u
}

and ∂−A =
{

u ∈ A : ∃v ∈ Ac, v ∼ u
}

, (5)

where Ac = V \ A is the complement of A. Figure 1 illustrates these notions on
a 4-adjacency image grid graph and on an arbitrary graph. One can note that
the boundary of V cannot be directly defined by (5). In this case, one assumed
that is given. Then, dilation over A can be interpreted as a growth process that



(a) 4-adjacency image grid graph (b) Arbitrary undirected graph

Fig. 1. Graph boundary on two different graphs. Gray vertices correspond to set A.
Plus or minus vertices are respectively outer ∂

+
A and inner ∂

−

A sets.

adds vertices from ∂+A to A. By duality, erosion over A can be interpreted as a
contraction process that removes vertices from ∂−A. The following proposition
shows the relation between the graph boundary and the gradients of the level
set function ‖(∇+

wfk)(u)‖p and ‖(∇−

wfk)(u)‖p.

Proposition 1. For any level set fk, gradient norms (3) are defined by

‖(∇+
wfk)(u)‖p =

[

∑

v∼u,v∈Ak

wp/2
uv

]1/p

χ∂+Ak(u) and

‖(∇−

wfk)(u)‖p =
[

∑

v∼u,v∈Ak

wp/2
uv

]1/p

χ∂−Ak(u) ,

(6)

where Ak⊂V is the set with fk=χAk and χ : V →{0,1} is the indicator function.

Proof. We prove the first relation in (6). If fk = χAk , then

‖(∇+
wfk)(u)‖p

(3)
=

[

∑

v∼u

wp/2
uv

∣

∣max
(

0, χAk(v) − χAk(u)
)∣

∣

p
]1/p

.

We study the cases where u ∈ Ak, u /∈ Ak and similarly with the neighborhood of
u. The only case where the quantity χAk(v)−χAk(u) > 0 is, when for a u /∈ Ak

and its neighbor v ∈ Ak. This configuration corresponds to the definition of
the outer set of vertices ∂+Ak defined in (5). Then, with this property one can
deduce the following relation:

‖(∇+
wfk)(u)‖p =

[

∑

v∼u,v∈Ak

wp/2
uv

]1/p

χ∂+Ak(u) .

Second relation in (6) is deduced by the same scheme: the only case where
χAk(v) − χAk(u) < 0 is when we consider the inner set of vertices ∂−Ak (i.e.
u ∈ Ak and v /∈ Ak). ⊓⊔



From Proposition (1) we can directly obtain the following one.

Proposition 2. For any level set fk and at vertex u ∈ V , the Lp-norm of
the gradient (∇wfk)(u) can be decomposed as ‖(∇wfk)(u)‖p = ‖(∇+fk)(u)‖p +
‖(∇−fk)(u)‖p.

Proof. Using the inner ∂+Ak and the outer ∂−Ak set of vertices and Proposi-
tion (1), we have:

‖(∇wfk)(u)‖p=
[

∑

v∼u
u∈∂+Ak

w
p
2
uv

∣

∣fk(v)−fk(u)
∣

∣

p
]

1
p
+

[

∑

v∼u
u∈∂−Ak

w
p
2
uv

∣

∣fk(v)−fk(u)
∣

∣

p
]

1
p

=‖(∇+
wfk)(u)‖p + ‖(∇−

wfk)(u)‖p .

⊓⊔
Remark 1. Propositions (1) and (2), only consider the Lp-norms. For the L∞-
norm one can demonstrate and obtain the same results by using expressions
defined in (4).

As for the continuous case, a simple variational definition of dilation applied to fk

can be interpreted as maximizing a surface gain proportional to +‖(∇wfk)(u)‖p.
Similarly, erosion can be viewed as minimizing a surface gain proportional to
−‖(∇wfk)(u)‖p. From Proposition (2), if we consider the case where u ∈ ∂+Ak,
‖(∇wfk)(u)‖p is reduced to ‖(∇+

wfk)(u)‖p and corresponds to dilation over Ak.
This process can be expressed by the following evolution equation ∂tf

k(u) =
+‖(∇+

wfk)(u)‖p. With same scheme, the erosion process is expressed by the
equation ∂tf

k(u) = −‖(∇−

wfk)(u)‖p. Finally, by extending these two processes
for all the levels of f , we can naturally consider the following two families of
dilation and erosion. These two processes are parameterized by p and w, over
any weighted graph G = (V, E, w). They are defined as

δp,t(f(u)) = ∂tf(u, t) = +‖(∇+
wf)(u, t)

∥

∥

p
and

εp,t(f(u)) = ∂tf(u, t) = −‖(∇+
wf)(u, t)

∥

∥

p
.

(7)

Dilation process algorithm. To solve the PdEs dilation and erosion processes
(7), on the contrary to the PDEs case, no spatial discretization is needed thanks
to derivatives directly expressed in a discrete form. Then, one obtains the general
iterative scheme for dilation, at time t+1, for all u ∈ V

f(u, t+1) = f(u, t) + ∆t‖(∇+
wf)(u, t)‖p (8)

where f(., t) is the parametrization of f by an artificial time t > 0. The initial
condition is f(u, 0) = f0(u) where f0 ∈ H(V ) is the initial function defined on
the graph vertices. With the corresponding gradient ∇+

wf norms, (8) becomes
for Lp and L∞-norms

f(u, t+1)
(3)
= f(u, t)+∆t

(

∑

v∼u

wp/2
uv

∣

∣max
(

0, f(v, t) − f(u, t)
)∣

∣

p
)1/p

and (9)

f(u, t+1)
(4)
= f(u, t)+∆t max

v∼u

(

w1/2
uv

∣

∣max
(

0, f(v, t) − fn(u, t)
)∣

∣

)

. (10)



The extension to erosion process case can be established by following the corre-
sponding gradient ∇−

wf norms in (3) and (4).
The proposed dilation and erosion framework has several advantages. (i) No

spatial discretization is needed in contrary to the continuous case. (ii) The choice
of a weight function provides a natural adaptive scheme by including more infor-
mation on edges and repetitive structures in the processing. Local and nonlocal
configurations are unified within same formulation. (iii) The same scheme works
on graph of arbitrary structure i.e. any discrete data that can be represented by
a graph can be processed with our framework.
Relations with image processing schemes. We show that with an adapted
graph topology and an appropriated weight function, the propose methodology
for dilation and erosion is linked to well-known methods defined in the context
of image processing. For simplicity we only consider dilation, but same remarks
apply for erosion.

Remark 2. When p=2 and the weight function is constant (i.e. w=1), one re-
covers from (9) the exact Osher and Sethian first-order upwind discretization
scheme [18] for a grayscale image defined as f : V ⊂ IR2→IR. Let G = (V, E, 1)
be a 4-adjacency grid graph associated to the grayscale image. From (9), we
have:

f(u, t+1)
w=1,p=2

= f(u, t) + ∆t
[

∑

v∼u

|max
(

0, f(v, t) − f(u, t)
)∣

∣

2
]1/2

.

Replacing the vertex u and its neighborhood by their spatial image coordinates

(x, y) and following the property
(

max(0, a−b)
)2

=
(

min(0, b−a)
)2

, we have

f((x, y), t+1)=f((x, y), t)+∆t
[

|min
(

0, f((x, y), t)−f((x−1, y), t)
)∣

∣

2
+

|max
(

0, f((x+1, y), t)−f((x, y), t)
)∣

∣

2
+

|min
(

0, f((x, y), t)−f((x, y−1), t)
)∣

∣

2
+

|max
(

0, f((x, y+1), t)−f((x, y), t)
)
∣

∣

2
]

1
2

.

One can also note that this discretization corresponds exactly to the Osher and
Sethian discretization scheme used by the PDEs-based dilation process. Using
this expression, the proposed morphological framework can perform sub-pixel
approximation. The notion of structuring elements as defined by [2] is recovered.
For a unit ball B =

{

z ∈ IR2 : ‖z‖p ≤ 1
}

, if we consider the three special cases
of p = 1, 2,∞, an approximation of a square, circle and diamond is obtained.

Remark 3. We study the case where p=∞, with a constant weight function (i.e.
w=1) and a constant time discretization (i.e. ∆t=1). Our formulation recovers
the classical algebraic flat morphological dilation formulation over graphs. From
(10) we have

f(u, t+1) = f(u, t) + max
v∼u

(

max
(

0, f(v, t) − f(u, t)
)

)

.



If f(v, t)−f(u, t) ≤ 0 then f(u, t+1)=f(u, t). If f(v, t)−f(u, t) > 0 then we ob-
tain f(u, t+1) = f(u, t)+max

v∼u

(

f(v, t)−f(u, t)
)

= f(u, t)+max
v∼u

(

f(v, t)
)

−f(u, t).

For both cases, by considering the neighborhood of vertex u includes u itself,
then we recover the classical algebraic dilation over graphs

f(u, t+1) = max
v∼u

(

f(v, t)
)

.

In this case, the structuring element is provided by the graph topology and the
vertices neighborhoods. For instance, if we consider an 8-adjacency image grid
graph, it is equivalent to a dilation by a square structuring element of size 3×3.

4 Experimental Results

The proposed morphological framework can be used to process any function
defined on the vertices of a graph or on any arbitrary discrete domain. In this
Section, we illustrate our methodology through basic operations such as dilation,
erosion, opening and closing. For a function f ∈ H(V ), the simplest way to obtain
opening and closing operations is to implement them serially as compositions of
dilation δ and erosion ǫ. Then, opening is δ

(

ǫ(f)
)

and closing is ǫ
(

δ(f)
)

.
In the sequel, to show the flexibility and the novelty of our framework, we

provide examples of morphological operations on arbitrary discrete data. We
also consider various graph topologies, and local and nonlocal interactions.

– Morphological image processing results are presented and in particular fast
image processing. Indeed, the proposed formulation allows to consider an-
other image representation than usual grid graph such as RAG. That leads to
decrease computation complexity while obtains similar processing behavior.

– Processing results on textured images illustrate the benefits on fine and
repetitive structures preservation of nonlocal interactions as compared to
local one.

– Morphological processing results on high-dimensional unorganized discrete
data show the potential of our framework to perform processing on arbitrary
discrete domain.

For all the examples we restrict ourselves to the case of p=2 for simplicity. The
objective of the following experiments is not to solve a particular application or
problem. They only illustrate the potential and the behavior of our morphological
framework.

Remark 4. In the case of vector-valued a function f :V →IRn, with f=(fi)i=1,...,n,
morphological operations are performed on each component fi independently.
This comes to have n morphological processes where the inner correlation be-
tween the vectorial data is expressed by the weight function that acts as a cou-
pling term.

Image processing on grid graph and fast processing on RAG. This ex-
periment compares the behavior of our proposed morphological operations for



(a) Original (b) Partition (c) Reconstructed
image

(d) Unweighted processing on grid
graph

(e) Weighted processing on grid graph (f) Weighted processing on RAG

Fig. 2. Dilation and erosion on image-based graph. (a) original image (65 536 pixels).
(b) partition (11 853 regions i.e. 82% of reduction). (c) reconstructed image. (d), (e) and
(f) at left dilation and at right erosion. (d) and (e) unweighted and weighted operations
performed on grid graph constructed from (a). (f) weighted operations performed on
a RAG constructed from (b) and (c).

image processing by considering different weight functions and graph structures.
Figure 2(a) presents an original scalar grayscale image considered as a function
f0: V ⊂ IR2→IR that defines a mapping from vertices to grayscale values. Fig-
ures 2(d) and 2(e) compare local unweighted and local weighted dilation and
erosion. The graph associated to these local processing is a 4-adjacency grid
graph, where the weight function is w=1 for the unweighted case and w = g2

with F (f0, .) = f0. As shown on these examples, weighted processing better pre-
serves edge information and main image structures as compared to unweighted
one that destroys them during morphological processes. Figure 2(f) illustrates
the flexibility of our framework by employing another image graph representa-
tion that allows fast processing. Figure 2(c) shows a reconstructed image with
fine partition (Fig. 2(b)) obtains from Fig. 2(a). Each pixel value in the fine par-
tition is replaced by its surrounding region mean color value. Then, the partition
is associated with a RAG where each vertex is associated with mean value func-
tion of its associated region. One can note the reduction of the simplified version
as compared to the original one (82% in terms of vertices). Figure 2(f) shows
dilation and erosion performed with this RAG where the weight function is the
same used in the grid graph case. Results exhibit similar behaviors as compared
to those in Fig. 2(e) while drastically reducing computation complexity due to
the reduced number of vertices to consider.

Nonlocal processing of textured images. This experiment shows one of
the novelty of our formulation: applying nonlocal patch-based approach to mor-
phological processing. To this aim, we compare local operations and nonlocal



(a) Original (b) Corrupted (c) Original (d) Corrupted (e) Original (f) Corrupted

(g) Local (h) Nonlocal (i) Local (j) Nonlocal (k) Local (l) Nonlocal

Fig. 3. Local and nonlocal closing on textured images. First row: original and corrupted
test images (Gaussian noise where σ = 20). Second row: local and nonlocal closing
results.

configurations on textured images. Figure 3 shows the obtained results for three
test images. The first row shows original images (Figures 3(a), 3(c) and 3(e)) and
corrupted ones (Figures 3(b), 3(d) and 3(f)) with Gaussian noise where σ=20.
The second row results are obtained by processing the corrupted images. For
each test image, images at left (Figures 3(g), 3(i) and 3(k)) are results obtained
with usual local closing achieved on a 4-adjacency grid graph associated with a
constant weight (w=1). Images at right show results closing obtained with nonlo-
cal configuration. These results clearly demonstrates that nonlocal patch-based
configuration outperforms local approach. Nonlocal patch-based method better
preserves frequent features during the morphological processing as compared to
the local one that destroys fine structures and repetitive elements.

To obtain such nonlocal results, the graph structure needs to incorporate
more image feature information than local one. When f0 ∈ H(V ) is the image
to process, the nonlocal features are provided by image patches i.e. F (f0, u) is
the values of f0 in a square window of size (2s+1)×(2s+1) at vertex u, which we

note Fs(f
0, u) ∈ IR(2s+1)×(2s+1). Then, the graph constructed to obtain nonlo-

cal patch-based closing corresponds to a modified version of k-NN (undirected)
where the nearest neighbors is selected depending on a patch distance measure
ρ defined as

ρ
(

Fs(f
0, u), Fs(f

0, v)
)

=

i=s
∑

i=−s

j=s
∑

j=−s

Ga((i, j))‖f0(u+(i, j)) − f0(v+(i, j))‖2
2 .

Ga is a Gaussian kernel of standard deviation a and the final weight function
associated with this graph is w=1. In experiments of Fig. 3, the graph is a 10-NN
graph with F3(f

0, .) as the feature vector within a neighborhood search window
of size 21×21. Similar definition and graph construction can be found in [7, 8]



and references therein.

Extension to high-dimensional unorganized data sets processing. The
following experiments present a novel application of morphological operators:
high-dimensional unorganized data sets processing. Figures 4 and 5 show opening
operation on four synthetic independent data sets and on the United States
Postal Service (USPS) handwritten digits images database.

Figure 4 shows the opening results on four noisy data sets. To obtain such
results, the graphs associated to original data (Fig. 4(a)) are a modified (undi-
rected) 8-NN graph associated with the weight function w = g2, where each ver-
tex of each graph corresponds to a data point and is described by a 2-dimensions
feature vector. The four constructed graphs are shown in Fig. 4(b). Figure 4(c)
shows results of opening operation. These results clearly show the filtering, de-
noising effect of the opening on the noisy original data. The processing tends to
group the data into the feature space while preserving main data structures.

(a) Original data sets (b) 8-NN graphs (c) Opening results

Fig. 4. Opening on four independent synthetic data sets.

Figure 5 shows the processing of high dimensional real-world image mani-
folds: the USPS handwritten digits data set. This database consists in grayscale
handwritten digit images scanned from digit 0 to 9. Each image is of size 16×16.
To perform opening operation on USPS database, we use two randomly subsam-
pled of 100 samples test sets. One from digit 0 and the other a mixed from digits
1 and 3. The graphs associated to the original data (Fig. 5(a)) are a modified
(undirected) 8-NN graph associated with the weight function w = g1, where
each vertex of each graph corresponds to an image sample and is described by a
256-dimensions (IR16×16) feature vector where each feature is a pixel grayscale
value. Figure 5(b) presents the opening results. These results clearly show the
filtering effect of the opening operation where all samples tends to be uniformly
identical and converge to an artificial mean digit model.

Finally, these two experiments show the potential of our morphological ap-
proach to process high-dimension unorganized data sets. This processing can be



(a) Original data (b) Corresponding opening

Fig. 5. Opening on USPS digit 0 and mixed digits 3 and 1.

viewed as a data pre-processing that can be useful to improve the efficiency of
final classification or machine learning purposes.

5 Conclusion

In this paper, a novel formalism of Mathematical Morphology operators based on
PdEs over weighted graphs of arbitrary topology has been proposed. This pro-
vides a framework that extends PDEs-based methods to discrete local and nonlo-
cal schemes. Moreover, this enables to process by morphological means any high-
dimensional unorganized multivariate data that has been very few considered in
literature. Fast morphological processing of images has also been proposed by
considering the Region Adjacency Graph instead of the usual grid graph. The
integration of nonlocal patch-based approach was highlighted for morphological
processing as an efficient way to preserve fine and repetitive structures. Finally,
our proposed framework allows us to apply morphological operations on any
discrete domain that can be useful for filter and denoise manifolds or databases.
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8. Peyré, G.: Manifold models for signals and images. Technical report, CEREMADE,
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