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ABSTRACT

In this paper, local and nonlocal image processing are uni-
fied, within the same framework, by defining discrete deri-
vatives on weighted graphs. These discrete derivatives
allow to transcribe continuous partial differential equa-
tions and energy functionals to partial difference equa-
tions and discrete functionals over weighted graphs. With
this methodology, we consider two gradient-based prob-
lems: regularization and mathematical morphology. The
gradient-based regularization framework allows to con-
nect isotropic and anisotropicp-Laplacians diffusions, as
well as neighborhood filtering. Within the same discrete
framework, we present morphological operations that al-
low to recover and to extend well-known PDEs-based and
algebraic operations to nonlocal configurations. Finally,
experimental results show the ability and the flexibility of
the proposed methodology in the context of image and un-
organized data set processing.

1. INTRODUCTION

In image processing and computer vision, techniques ba-
sed on energy minimization and partial differential equa-
tions (PDEs) have shown their efficiency in solving many
important problems, such as smoothing, denoising, inter-
polation and segmentation [1, 2, 3, 4].

We focus on two categories of problems based on gra-
dient norms: regularization and mathematical morphol-
ogy (MM). Solutions of such problems can be obtained by
considering the input discrete data (e.g. images, meshes,
data sets) as continuous functions defined on a continuous
domain, and by designing continuous PDEs whose solu-
tions are discretized in order to fit with the natural dis-
crete domain. Such PDEs-based methods have the advan-
tages of better mathematical modeling, connections with
physics and better geometrical approximations. Differen-
tial operators involved in these PDEs are classically based
on local derivatives, that reflect local interactions on the
data. Recently, nonlocal derivatives have been proposed in
the context of image processing to design gradient-based
regularization functionals and PDEs associated with their

minimization [5, 6, 7]. These nonlocal PDEs are linked to
an important category of neighborhood filters which have
shown their efficiency to better preserve fine and repetitive
image structures than local ones [8, 9, 10, 11].

An alternative methodology to continuous PDEs-based
regularization, is to formalize the problem directly in dis-
crete settings. This is the case for neighborhood filters
which are mainly based on discrete weighted Laplacians.
See [12, 13] for a description of these operators in the gen-
eral context of graph theory. In particular, it is shown that
Laplacian filtering is equivalent to Markov matrix filter-
ing, and by consequence it is also related to spectral graph
filtering. These properties has been used in the context of
image denoising by [14, 15]. Another interesting work is
the digitization of the total variation (TV) and the Rudin-
Osher-Fatemi (ROF) model of images [16] onto unwei-
ghted graphs [17, 18]. This discrete formulation has re-
ceived much less attention than its continuous analog. An
extension of this model, that uses a normalizedp-Dirichlet
energy on weighted graphs, is proposed in [19] in the con-
text of semi-supervised learning.

We have presented a similar extension in the context
of image and mesh processing [20, 21, 22]. There exist
several advantages of these latter graph-based approaches.
In particular, they lead to a family of discrete and semi-
discrete diffusion processes based onp-Laplacians. These
processes, parametrized by the graph structure (topology
and geometry) and by the degreep of smoothness, allow to
perform several filtering tasks such as smoothing/denoising
and simplification. Moreover, local and nonlocal image
regularizations are formalized within the same framework,
that corresponds to the transcription of the nonlocal con-
tinuous regularizations proposed in [5, 6]. The unifica-
tion of local and nonlocal gradient-based regularization
is realized by defining explicitly discrete derivatives on
graphs. These discrete derivatives can be used to tran-
scribe other continuous PDEs and energy functionals to
partial difference equations (PdEs) and discrete function-
als over weighted graphs.

The aim of this paper is twofold. Firstly, the gradient-
based regularization framework presented in [20, 21, 22]



is extended by taking into account a more general regu-
larization functional than thep-Dirichlet energy. In par-
ticular, this allows to connect isotropic and anisotropic
versions of graph-basedp-Laplacians. Secondly, based
on the same discrete derivatives, we formulate mathemat-
ical morphology operators (dilation and erosion) which
can be used to perform several morphological processes
on weighted graphs, such as opening, closing, reconstruc-
tion and leveling. These operators and processes are ana-
log to the ones encountered in continuous PDEs-based
MM [23, 24] and in algebraic MM [25, 26, 27]. In this
latter approach, only algebraic MM operations are con-
sidered on particular graphs (binary, minimum spanning
tree). Also, both continuous PDEs-based MM and alge-
braic MM are considered in local settings. Our general
graph-based approach has the advantage to handle local
and nonlocal configurations within the definition of MM
operators.

The rest of this paper is organized as follows: Sec-
tion 2 recalls basic definitions related to graphs and in-
troduces first and second order operators used in the rest
of the paper. Section 3 presents the proposed regulariza-
tion framework and associated filters. This framework
is illustrated in Section 4 on two interpolation problems,
namely semi-supervised image colorization and segmen-
tation. Then Section 5 presents the proposed graph-based
MM operators. Finally, Section 6 shows the application
of the proposed methods to process image partitions and
unorganized data sets.

2. DIFFERENCE OPERATORS ON GRAPHS

In this section, we recall some basic definitions on graphs,
and we define first and second order operators which can
be considered as discrete versions of continuous differ-
ential operators. Analog definitions and properties have
also been used in the context of functional analysis on
graphs [28, 29] and semi-supervised learning [19, 13].

2.1. Preliminary definitions

Let G = (V, E, w) be aweighted graphwith a finite setV
of vertices and a finite setE ⊂ V × V of weighted edges.
The weightwuv of an edge(u, v) ∈ E is generally defined
from a functionw : V × V → R

+ such that

w(u, v) =

{

wuv if (u, v) ∈ E,

0 otherwise.

It encodes the similarity between two vertices of the graph.
In this paper, graphs are assumed to be connected, undi-
rected, with no self-loops or multiple edges. Under these
conditions, the weight functionw is symmetric (w(u, v) =
w(v, u), ∀(u, v) ∈ V ×V ), andw(u, u) = 0 for all u ∈ V .

Let A ⊂ V be a connected subset ofV , i.e. for all
u ∈ A there exists a vertexv ∈ A such that(u, v) ∈ E.
Let Ac = V \ A be the complement ofA in the graphG.
Then, the boundary ofA in G is composed of theouter
boundaryand theinner boundaryof A, that are defined

respectively by the two following subsets ofV :






∂+A
def.
= {u ∈ Ac : ∃v ∈ A, (u, v) ∈ E},

∂−A
def.
= {u ∈ A : ∃v ∈ Ac, (u, v) ∈ E}.

(1)

One can note that the boundary ofV cannot be directly
defined by (1). In this special case, it must be given.

The setV of vertices can be regarded as a discrete
space. Letf, h : V → R be two discrete functions (vec-
tors) that assign a real value to each vertex of the graph.
TheL2 inner product of these functions is given by:

〈f, h〉V def.
=
∑

u∈V

f(u)h(u). (2)

The space of such function is notedH(V ).
Similarly, we define the spaceH(E) of functions de-

fined on the setE of edges. LetF, H : E → R be two
functions that assign a real value to each edge(u, v) ∈ E.
The inner product of these functions is defined by:

〈F, H〉E def.
= 1

2

∑

u∈V

∑

v∼u

F (u, v)H(u, v), (3)

wherev ∼ u denotes a vertexv connected tou by an edge
of E.

2.2. Construction of weighted graphs

Functions of the spaceH(V ), defined in the previous sec-
tion, represent the data to be processed. These functions
can be originally defined on geometric spaces, such as im-
ages and unorganized set of points. Indeed, any discrete
imageI : Ω ⊂ Z

2 → R can be regarded as a func-
tion f0 : V ⊂ Z

2 → R, whereV is the set of pixels.
More generally, this is also the case of any unorganized
set of pointV ⊂ R

n, which can be seen as a function
f0 : V ⊂ R

n → R
n.

There exist several popular methods that transform the
setV , with a given pairwise distance measureµ : V ×
V → R

+, into a neighborhoodgraph (or similarity graph).
Constructing such a graph consists in modeling neighbor-
hood relationships between data.

Among the existing graphs, the simplest of them is the
δ-neighborhood graph, notedGδ, where two datau, v ∈
V are connected by an edge ofE if µ(u, v) ≤ δ, with
δ > 0 a threshold parameter. We can also quote the
minimum spanning tree, thek-nearest neighbors graph,
the Delaunay triangulation, or the relative neighborhood
graph, as other possible graph topologies (see [30] for a
survey on neighborhood graphs used in pattern recogni-
tion).

In this paper, we consider theδ-neighborhood graph,
and a modified version of thek-nearest neighbors graph
since this latter graph is not necessarily directed. In order
to make this graph undirected, letnnk(u) be the set of
k-nearest neighbors of the vertexu. Then, a vertexv is
connected tou if u ∈ nnk(v) or v ∈ nnk(u). The obtained
graph is notedk-NNG. We also consider the complete
graph that we noteG∞.



When the functionf0 is a discrete imagef0 : V ⊂
Z

2 → R, the choice of the functionµ to construct the
graph can be defined as the Chebyshev distance:

µ(u = (xi, yi), v = (xj , yj)) = max{|xi−xj|, |yi−yj|}.

By using this distance, the shape of the neighborhood in-
volved in theδ-neighborhood graph corresponds to the
standard square window of size(2δ+1)×(2δ+1). In par-
ticular,G1 is the8-adjacency grid graph. The4-adjacency
grid graph is notedG0.

When the functionf0 : V ⊂ R
n → R

n represents a
discrete set of data, the functionµ is simply chosen as the
Euclidean distance.

In order to process a given functionf0 ∈ H(V ) the
construction of graphs can also take into account this func-
tion within the distance measureµ. Once the graph has
been constructed, its weights are computed according to a
measure of similarityg : V × V → R

+, which satisfies:

w(u, v) =

{

g(u, v) if (u, v) ∈ E,
0 otherwise.

This measure can simply be defined as the inverse of the
distance measure:g = µ−1. Distances between vertices
are estimated by comparing their features. To this aim,
every datau ∈ V is assigned with a feature vector de-
noted byF (f0, u) ∈ R

q. Several choices can be consid-
ered for the expression ofF , depending on the nature of
the features to be preserved. In the simplest case, one can
considerF (f0, u) = f0(u). The weight functionw, asso-
ciated to a given graph, can naturally incorporate local or
nonlocal features according to the topology of the graph.
For instance, one can consider the following weight func-
tions:

g1(u, v)= exp

(

−ρ(F (f0, v), F (f0, u))2

σ2

)

,

g2(u, v)=(ρ(F (f0, u), F (f0, v))+ǫ)−1, ǫ>0, ǫ→0,

whereσ > 0 controls the feature similarity andρ : V ×
V → R

+ is a distance measure to be defined next.
Whenf0 ∈ H(V ) is an image, an important feature

vector is provided by image patches, i.e.F (f0, u) is the
values off0 in a square window of size(2k+1)×(2k+1),
centered at the vertexu, which we noteFk(f0, u). This
feature vector has been proposed in the context of texture
synthesis [31], and then used in the context of image pro-
cessing (see [11, 7, 32, 6, 5] and references therein). The
distance functionρ associated with this feature vector is
given by:

ρ(Fk(f0, u), Fk(f0, v)) =

k
∑

x=−k

k
∑

y=−k

K((x, y))‖f0(u + (x, y))−f0(v + (x, y))‖2
2,

whereK is a Gaussian kernel of a given standard devi-
ation. This latter can be replaced by the Chebyshev dis-
tance between the position of pixels.

2.3. Difference operator and its adjoint

All the basic operators considered in this paper are de-
fined from the difference operator or the discrete deriva-
tive. There exist several definitions of these operators on
graphs [28, 29, 19, 13]. As in [20], we present here a defi-
nition of the difference operator that allows to retrieve the
expression of combinatorialp-Laplace operators.

The difference operatord : H(V ) → H(E) of a
functionf ∈ H(V ) is the vector of all weighted discrete
derivatives:

df
def.
= ((df)(u, v))(u,v)∈E ,

where

(df)(u, v)
def.
=

√
wuv (f(v) − f(u)) , ∀(u, v) ∈ E, (4)

and

∂vf(u)
def.
= (df)(u, v) (5)

is thediscrete (partial) derivativeof f , with respect to the
edge(u, v), at a vertexu. One can observe that this deriva-
tive share the same properties as the continuous derivative
of a function defined in the Euclidean space, i.e.∂uf(v) =
−∂vf(u), and∂uf(u) = 0, and if f(u) = f(v) then
∂vf(u) = 0.

We define also the vector:

|df | def.
= (|(df)(u, v)|)(u,v)∈E , (6)

where|(df)(u, v)| =
√

wuv|f(v) − f(u)|. This one is
used in the definition of the anisotropicp-Laplacian (see
Section 2.5).

The adjoint operatord∗ : H(E) → H(V ), of the
difference operatord is defined by:

〈df, H〉E = 〈f, d∗H〉V ,

for all f ∈ H(V ) and H ∈ H(E). By using the ex-
pressions (2) and (3), it is easy to deduce the following
expression ofd∗ at each vertex of the graph (see [13, 22]):

(d∗F )(u) = 1
2

∑

v∼u

√
wuv (F (v, u) − F (u, v)) . (7)

We introduce also two other difference operators that
constitute the basis of the morphological operators defined
in Section 5. They are based on the difference operatord,
and on the classical maximum (respectively minimum)
operator as:

(d+f)(u, v)
def.
= max (0, (df)(u, v)) , and

(d−f)(u, v)
def.
= min (0, (df)(u, v)) .

(8)

As before, the corresponding partial derivatives are re-
spectively given by∂+

v f(u) and∂−

v f(u).



2.4. Gradients and their norms

As in the Euclidean space, one can define the gradient
of a functionf ∈ H(V ) at each vertexu ∈ V as the
vector of all partial derivatives, with respect to the set of
edges(u, v) ∈ E:

(∇f)(u)
def.
= (∂vf(u))(u,v)∈E . (9)

In the sequel, we use theLp-norm of this vector:

‖(∇f)(u)‖p =

(

∑

v∼u

w
p
2
uv|f(v) − f(u)|p

)
1
p

, (10)

as well as its infinite norm:

‖(∇f)(u)‖∞ = max
v∼u

(
√

wuv|f(v) − f(u)|) .

As before, one can define two other gradients (and
their associated norms) based on the partial derivatives∂+f
and∂−f , which we note respectively∇+ and∇−. For in-
stance, we have the following norms for∇+:

‖(∇+f)(u)‖p =

(

∑

v∼u

w
p
2
uv(max(0, f(v) − f(u)))p

)
1
p

,

‖(∇+f)(u)‖∞ = max
v∼u

(
√

wuv max(0, f(v) − f(u))) .

2.5. Second order operators

One of the most important second order operator on graphs
is the Laplacian, which has several well-established ex-
pressions (see [12, 13] for a complete study). All the ex-
pressions can be derived from the following definition.

TheLaplacian∆ : H(V ) → H(V ) is the linear oper-
ator defined by:

∆f
def.
= d∗df.

By using expressions (7) and (4), we retrieve thecombi-
natorial Laplacian(or unnormalized Laplacian), which is
expressed at each vertexu ∈ V by:

(∆f)(u) =
∑

v∼u

wuv(f(u) − f(v)),

= f(u)
∑

v∼u

wuv −
∑

v∼u

wuvf(v).
(11)

An extension of the Laplacian is the(isotropic)p-La-
placian∆i

p : H(V ) → H(V ) defined forp ∈ (0, +∞)
by:

∆i
pf

def.
= d∗(‖∇f‖p−2

2 df).

Again by using (7) and (4), we get thecombinatorialver-
sion of thep-Laplacian, which is expressed at each ver-
texu ∈ V by (see [22] for more details):

(∆i
pf)(u) =

∑

v∼u

γp,f
uv (f(u) − f(v)),

with γp,f
uv = 1

2wuv

(

‖(∇f)(u)‖p−2
2 + ‖(∇f)(v)‖p−2

2

)

.

(12)

It is a nonlinear operator forp 6=2. An interesting case is
provided byp=1, which corresponds to thecombinatorial
(mean) curvatureof the functionf over the graph (see for
instance [18] for a similar definition on unweighted graphs
in the context of image restoration).

We now define anotherp-Laplacian, which is based
on the vector|df |. The (anisotropic)p-Laplacian∆a

p :
H(V ) → H(V ) is defined by:

∆a
pf = d∗(|df |p−2df).

Then, from (7) and (4), we obtain thecombinatorialver-
sion of theanisotropic p-Laplacian, which is expressed at
each vertexu ∈ V by (see [33] for more details):

(∆a
pf)(u) =

∑

v∼u

w
p
2
uv|f(u) − f(v)|p−2(f(u) − f(v)).

(13)
As ∆i

p, this operator is nonlinear ifp 6=2. If p=2, bothp-
Laplacians corresponds to the Laplacian. It can be shown
that they can be linked within a same operator defined by
d∗(|df |p−2‖∇f‖p−2

2 df). In the same spirit, one can also
define higher order operators.

3. REGULARIZATION MODELS AND
DIFFUSION PROCESSES

In this section, we propose a variational model to regu-
larize functions defined on the vertices of graphs, and the
discrete diffusion processes associated with it.

3.1. Problem formulation and equations on graphs

Letf0 ∈ H(V ) be a given function defined on the vertices
of a weighted graphG = (V, E, w). In a given context,
this function represents an observation of a clean function
h ∈ H(V ) corrupted by an additive noisen ∈ H(V ) such
thatf0 = h + n.

To recover the uncorrupted functionh, the processing
task is to remove the noisen from f0. A commonly used
method is to seek for a functionf ∈ H(V ), which is reg-
ular enough onG, and also close enough tof0. This can
be formalized by the minimization of an energy functional
which involves a regularization term (or penalty term) plus
an approximation one (or fitting term). In this paper, we
consider the following model:

h ≈ argmin
f :V →R

J(f) + λ
2 ‖f − f0‖2

2, (14)

where J(f)
def.
=
∑

u∈V

φ (‖(∇f)(u)‖p) (15)

is a gradient-based functional, andλ ∈ R is a regulariza-
tion parameter, called Lagrange multiplier, that controls
the trade-off between the penalty term and the fitting term.
The functionφ(·) is a kernel that penalizes large variations
of f in the neighborhood of each vertex. Several penalty
kernels have been proposed in literature, in different sit-
uations. Among them, we can quoteφ(s) = s2 (known
in the context of Tikhonov regularization [34]),φ(s) = s



(total variation [16, 17]),φ(s) =
√

s2 + ǫ2 − ǫ (regular-
ized total variation [16, 17]), andφ(s) = r2 log(1+s2/r2)
(nonlinear diffusion [35]).

To get the solution of (14), we consider the following
system of equations (Euler-Lagrange equation):

∂J(f)

∂f(u)
+ λ(f(u) − f0(u)) = 0, ∀u ∈ V, (16)

where the first term denotes the variation of (15) with re-
spect tof at a vertexu. It is easy to show that this variation
is equal to:

∂J(f)

∂f(u)

(15)
=

∂φ (‖(∇f)(u)‖p)

∂f(u)
+
∑

v∼u

∂φ (‖(∇f)(v)‖p)

∂f(u)

= φ′ (‖(∇f)(u)‖p)
∂‖(∇f)(u)‖p

∂f(u)

+
∑

v∼u

φ′ (‖(∇f)(v)‖p)
∂‖(∇f)(v)‖p

∂f(u)

(10)
=
∑

v∼u

αφ,p,f
uv |f(v) − f(u)|p−2(f(u) − f(v)),

(17)
where

αφ,p,f
uv = w

p
2
uv

(

φ′ (‖(∇f)(u)‖p)

‖(∇f)(u)‖p−1
p

+
φ′ (‖(∇f)(v)‖p)

‖(∇f)(v)‖p−1
p

)

.

One can observe that this expression has the form of an

operator∆φ : H(V ) → H(V ), ∆φ
def.
= (17) closely

related to the second order operators introduced in Sec-
tion 2.5. Indeed, theq-Laplacian operator∆i

q is equal
to (17) if p = 2 andφ(s) = sq, and theq-Laplacian∆a

q is
equal to (17) ifp = q andφ(s) = sq.

In most cases (values ofq), the system (16) is nonlin-
ear, and thus it is difficult to find a close solution. Approx-
imated solutions are given in the following sections. Also,
the regularization functionalJ must be convex to ensure
that the solution of (16) is also the solution of (14), which
depends onφ andp.

3.2. Diffusion processes

The first method, that is considered to get the solution
of (16), is based on the gradient descent of (16):

∂tf(u, t) = −(∆φf)(u, t)+λ(f0(u)−f(u, t)), ∀u ∈ V,
(18)

with the initial condition∂t=0f=f0. This describes a
family of fitted diffusion flows on weighted graphs. This
family includes and extends several well-known flows in-
tensively used in image processing and computer graph-
ics. Most of them are formulated without the fitting term
(λ=0), and has been analyzed by [2] in the context of im-
age processing. In particular, for the regularization kernel
φ(s)=s2 andp=2, we obtain Laplacian-based diffusion,
and if φ(s) = s it corresponds to mean curvature-based
diffusion.

A classical iterative algorithm to get the solution of (18),
at a timet + 1, is the Euler one. An iteration of this algo-
rithm is given by:

f(u, t + 1) = f(u, t) + ∆t ∂tf(u, t), ∀u ∈ V, (19)

wheref(·, t) is the parametrization off by an artificial
time t > 0.

3.3. Neighborhood filters

This section describes a second approach to get the solu-
tion of (16), that is rewritten as:
(

λ +
∑

v∼u

αφ,p,f
uv |f(v) − f(u)|p−2

)

f(u)

+
∑

v∼u

αφ,p,f
uv |f(v) − f(u)|p−2f(v) = λf0(u)

Since this is a nonlinear system, an interesting approxi-
mate solution is provided by the linearized Gauss-Jacobi
iterative algorithm, an iteration of which is decomposed
in the following two steps:


















βφ,p,f
uv =

∑

v∼u

αφ,p,f
uv |f(v, t) − f(u, t)|p−2, ∀(u, v) ∈ E,

f(u, t + 1) =
λf0(u) +

∑

v∼u βφ,p,f
uv f(v, t)

λ +
∑

v∈V βφ,p,f
uv

, ∀u ∈ V.

(20)
This describes a family of neighborhood filters. Indeed, at
each iteration, the new value off at a vertexu depends
on two quantities: the initial valuef0(u), and a weighted
average of the filtered values off in the neighborhood
of u. As in Section 3.2, the choice of the regularization
parameters and the choice of the graph allow to retrieve
and to extend several well-known filters proposed in the
context of image smoothing and denoising.

In particular, forp=2 andφ(s)= 1
2s2, iteration (20) is

rewritten as:

f(u, t + 1) =
λf0(u) +

∑

v∼u wuvf(v, t)

λ +
∑

v∼u wuv
. (21)

Without being exhaustive, whenλ = 0 (no fitting term),
one iteration of (21) corresponds to the following filters:

- Gaussian filter if the weight function is

wuv = exp

(

−‖u − v‖2
2

2σ2

)

,

- σ-filter [8, 9] if

wuv = exp

(

−‖f0(u) − f0(v)‖2
2

σ2

)

,

- SUSAN [36] or bilateral [10] filters if

wuv = exp

(

−‖u − v‖2
2

2σ2

)

exp

(

−‖f0(u) − f0(v)‖2
2

σ2

)

,

(22)
- Nonlocal means filter [11] ifw=g2.

While iterated versions of these three latter filters are re-
lated to nonlinear diffusion (since the weights depend on
the filtered functionf , they need to be updated at each it-
eration), several iterations of (21) describe a linear filter
that is related to Laplacian smoothing (Section 3.2).



(d) G0, unweighted (e)G8, w = (22), (f) G8, w = g2, F5(f0, ·)

q
=

2

(a)f0 : V → R

q
=

1

(b) G0, unweighted

q
=

0
.7

(c) G0, w = g1, F f0

0
= f0

q
→

0

Figure 1. Local and nonlocal image smoothing. (a) The initial imagef0 is regularized until convergence of the filter (20),
with p=1, φ(s)=s, p=2, andλ = 0.01: (b) Discrete TV regularization. (c) Discrete weighted-TVregularization. Col-
umns (d), (e) and (f): Behavior of the regularization with800 iterations of (20),λ = 0, φ(s) = sq, p = 2. On G0, it
corresponds to the unweighted Laplacian smoothing forq = 2 and to the digital TV filter forq = 1. OnG8 with w=(22),
it is the iterative bilateral filter (without updating the weights) forq = 2. OnG8 with w = g2, it is the iterative nonlocal
means filter (without updating the weights). The other casescan be considered as extensions of these filters by varyingq.

Another particular case of the proposed neighborhood
filters is the TV digital filter [18], which is obtained for
φ(s)=s, p=2, andwuv=1 for all (u, v) ∈ E. We have
extended this filter to weighted graphs and toφ(s) = sq

in [20, 21, 22]. Figures 1(a) to 1(c) illustrate the difference
between the weighted and unweighted cases in the context
of image smoothing on the graphG0. We can observe that
for the same value ofλ, using a weight function helps to
preserve image discontinuities.

The behavior of the regularization forp = 2, φ(s) =
sq, q ∈ (0, 2], is illustrated in Figures 1(d) to 1(f) for sev-
eral values ofq, several graph structures andλ = 0. The
number of iterations is the same in all the cases (800).
We can do two principal observations. As the size of the
neighborhood increases, sharp edges and image redundan-
cies are better preserved. This is also the case for the use
of nonlocal weights based on patches. Whenq < 1 and
particularly whenq → 0, the regularization behaves like
a simplification procedure. This last observation is de-
picted in the first row of Figure 2, where we can see the
effect of the structure of the graph. More examples are

given in [21, 22] in the context of image and mesh smooth-
ing/denoising.

In the sequel, the family of filters presented in this sec-
tion are the one that is used in the applications. More gen-
erally, to process vector-valued functionsf : V → R

n,
f = (fi)i=1,...,n, we use the same filter but the norm of
the gradient, in the coefficientαφ,p,f

uv , is replaced by its
n-dimensional version:

‖(∇f)(u)‖p
def.
=





∑

i=1,...,n

‖(∇fi)(u)‖p
p





1
p

.

4. REGULARIZATION-BASED INTERPOLATION

In image processing, several problems such image inpaint-
ing, super-resolution, image colorization or semi-supervi-
sed segmentation can be interpreted as interpolation prob-
lems. Given a data set where some data are missing, inter-
polation consists in predicting missing data from existing
ones.



q
=

0
.7

q
→

0

Figure 2. Results presented in Figure 1 forq < 1 and ren-
dered here in false colors (each color corresponds to a gray
value). First line represents part of5th row of Figure 1 and
second line represents Part of6th row of Figure 1. We can
observe the relation between the size of the neighborhood
and the leveling of the image.

Formally, given a knowing functionf0 ∈ H(V 0) de-
fined onV 0 ⊂ V , interpolation problem consists in pre-
dicting a functionf ∈ H(V ) according tof0. These
problems can be formulated by considering the discrete
regularization model (14):

argmin
f :V →R

J(f) +
∑

u∈V

λ(u)
2 (f(u) − f0(u))2, (23)

whereλ : V → R is a function of the form:

λ(u)
def.
=

{

λu if u ∈ V 0

0 otherwise.
(24)

In this section, we focus on two categories of interpo-
lation problems: the semi-supervised image colorization
and segmentation.

Image colorization. Colorization is the process of adding
colors to monochrome images and is usually made by hand
by an expert. Recently, several methods have been pro-
posed for colorization [37, 38] that less require intensive
manual efforts. These techniques colorize the image based
on the user’s input color scribbles and are mainly based on
a diffusion process. However, most of these diffusion pro-
cesses only use local pixel interactions that cannot prop-
erly describe complex structures expressed by nonlocal in-
teractions. We propose to address this problem within our
framework and we propose to introduce nonlocal config-
urations in colorization processes [39].

Figure 3 shows a comparison between local and non-
local colorization. Figure 3(a) shows a grayscale image
f l : V → R, on which a user provides an image of color
scribblesfs : V0 ⊂ V → R

3 (Figure 3(b)). The image
color scribbles defines a mapping from the vertices to a
vector ofRGB color channels:fs(u) = (fs

i (u))i=R,G,B .
From these functions, one computesf c : V → R

3 that
defines a mapping from the vertices to a vector of chromi-

(a) Gray level image (b) Color scribbles

(c) Local (d) Nonlocal

Figure 3. Local versus nonlocal colorization withφ(s) =
s, p = 2 andλu = 0.01

nance:

f0(u) =

{

(

fs
i (u)/f l(u)

)

i=R,G,B
if u ∈ V0

(0, 0, 0) otherwise.

The colorization process is performed according to Equa-
tion (23), whereλu = 0.01 ensures that the original color
scribbles can change during the process. At convergence
of the process, the final function is defined asf : V → R

3

and final colors are obtained by

f l(u) (fi(u, t → +∞))i=R,G,B .

Figures 3(c) and 3(d) show the obtained colorization, re-
spectively in local and nonlocal schemes. The graph asso-
ciated with the local processing is the graphG1 associated
with the weight functionw = g1 whereF (f l, u) = f l(u)
for a vertexu. For the nonlocal colorization, the asso-
ciated graph is the graphG5 associated with the weight
functionw = g1 whereF2(f

l, u) is used as a feature vec-
tor.

One can view the benefits of nonlocal processing as
compared to local one: the eyes and several areas of the
bib are not properly colored and have diffused over straight
edges. On the opposite, nonlocal colorization has success-
fully colored these areas thanks to its ability to discover
similar textures and fine details.

Semi-supervised image segmentation. Numerous auto-
matic segmentation schemes have been proposed in litera-
ture and they have shown their efficiency. But sometimes,
automatic segmentation results are not accurate when im-
ages are much more complex. Meanwhile, recent interac-
tive image segmentation approaches have been proposed.
They reformulate image segmentation into semi-supervi-
sed classification by label propagation strategies [40, 41].
Other applications of these label diffusion methods can be
found in [19, 42]. We propose to address this learning



(a) Original (b) Original+initial strokes

(c) Local (p = 2, φ(s) = s2 and
G1)

(d) Nonlocal patch-based (p = 2,
φ(s) = s2 andG4)

(e) Local (p = 1, φ(s) = s and
G1)

(f) Nonlocal patch-based (p = 2,
φ(s) = s2 and 16-NNG ∪ G1

graph)

Figure 4. Local versus nonlocal patch-based image semi-
supervised segmentation. All the result images were
whitened in order to accentuate the user labels and the
segmented boundary.

problem as an interpolation problem within our regular-
ization framework.

The semi-supervised clustering of the setV consists
in grouping the setV into k classes where the number
k of classes is given. For this, the setV is composed of
labeled data sets and unlabeled ones. The objective is then
to estimate the unlabeled data from labeled ones. Letci be
the set of vertices which belong to theith class. The set
V 0={ci}i=1,...,k is the initial set of labeled data, and the
initial unlabeled data is the setV \ V 0. This is equivalent
to considerk label functionsf0

i :V →R such as

f0
i (u) =

{

1 if u ∈ ci with i = 1, . . . , k, ∀ c∈V 0

0 otherwise ,

where eachf0
i , with i = 1, . . . , k, corresponds to a given

class. Starting from the labeled data (thef0
i ’s), the vertex

clustering is accomplished byk regularizations defined in
(23) whereλu = +∞. At convergence of the processes,
one can estimate the class membership probabilities and
assign to a vertexu the most plausible one. For alli ∈
1, . . . , k, we have

argmax
i

{

fi(u, t → +∞)/
∑

i

fi(u, t → +∞)
}

. (25)

To obtain a final image segmentation, a connected image

components labeling can be performed on classified ele-
ments.

Figure 4 shows the behavior of our semi-supervised
image segmentation method for local and nonlocal con-
figurations, graph structures andp values.

Figure 4(b) shows original image with initial labels
superimposed. Figures 4(c) and 4(e) show the final seg-
mentation performed on the graphG1 with the weight
function w = g1. Figure 4(c) is obtained withp = 2
and Figure 4(e) withp = 1. In the latter case, we use
the anisotropic version of our regularization. Both results
show a suitable segmentation. When we use nonlocal con-
figuration (Figure 4(d)), the segmentation captures more
fine image structures and details. The associated graph for
this nonlocal processing is a graphG4 with a weight func-
tion w = g1 where the feature vectorF2(f

0, u) is used.
In these three latter segmentations, one can note that the
boundaries are not smooth. By using a modified nonlocal
configuration graph, Figure 4(f) shows a better segmen-
tation where the boundaries are more smoother. In this
case, we use a graph defined as16-NNG∪ G1. The near-
est neighbors are selected with a patch distance where the
feature vector isF5(f

0, u) within a 15×15 neighborhood
search window. Finally, the weight function associated
with this graph isw = 1.

5. MATHEMATICAL MORPHOLOGY

The two fundamental operators in Mathematical Morphol-
ogy are dilation and erosion. They form the basis of many
other morphological processes such as opening, closing,
reconstruction, leveling, etc [26].

These two operations are commonly defined in terms
of algebraic set operators but alternative formulations, ba-
sed on PDEs was also proposed by [23, 24] and references
therein. For a unit discB =

{

z ∈ R
2 : ‖z‖p ≤ 1

}

,
PDEs-based methods generate flat dilation and erosion of
a scalar functionf0 : Ω ⊂ R

2 → R by B with the fol-
lowing diffusion equations:δt(f) = ∂tf = +|∇f | and
ǫt(f) = ∂tf = −|∇f |, where∇ = (∂x, ∂y)T is the spa-
tial gradient operator andf is the transformed version of
f0. If one assumes that the evolution at timet=0 is ini-
tialized withf(x, y, 0) = f0(x, y), solution off(x, y, t)
at timet>0 provides dilation (with the plus sign) or ero-
sion (with the minus sign) within a disc of radiust. These
PDEs produce continuous scale morphology and have the
advantages of offering excellent results for non-digitally
scalable structuring elements whose shapes cannot be cor-
rectly represented on a discrete grid; allowing sub-pixel
accuracy and can be adaptive by introducing a local speed
evolution term [43].

In this section, we present our morphological frame-
work based on discrete derivatives and PdEs. The pro-
posed formulation extends local PDEs-based approaches
to nonlocal configuration in context of image processing.
In the sequel, we introduce our dilation and erosion pro-
cesses based on previously defined discrete operators. Then,
links with well-known MM morphology methods are dis-
cussed and we show that formulations are special cases of



our methodology. Finally experiments in image process-
ing show the benefits of weighted and nonlocal operations
for image morphological processing that better preserve
edges, fine and repetitive image structures.

5.1. Dilatation and erosion processes

In this section, we define the discrete analogue of the con-
tinuous PDEs-based dilation and erosion formulations. One
wants to obtained the two following dilation and erosion
processes over graphs:

δp,t(f) =
∂f

∂t
= +

∥

∥∇+f
∥

∥

p
and

ǫp,t(f) =
∂f

∂t
= −

∥

∥∇−f
∥

∥

p
,

(26)

where‖.‖p corresponds to theLp-norm.
To establish these two morphological processes, we

use on the one hand, the decomposition of a functionf :
V → R into its level setsfk = H(f − k) whereH is
the Heaviside function and, on the other hand, the graph
boundaries notion defined in (1). Then, one can interpret
dilation process overA as a growth process that adds ver-
tices from∂+A to A. By duality, erosion process can be
interpreted overA as a contraction process that removes
vertices from∂−A.

One can demonstrate, the relation between the graph
boundary and the gradient norm of the level set function
at vertexu ∈ V :

∥

∥∇+fk(u)
∥

∥

p
and

∥

∥∇−fk(u)
∥

∥

p
,

by studying cases whereu ∈ Ak or u /∈ Ak and similarly
for v ∼ u (see [44] for more details). Then, for any level
setfk, theLp-norm (with0 < p < +∞) of the directional
gradients

∥

∥∇+fk(u)
∥

∥

p
and

∥

∥∇−fk(u)
∥

∥

p
at a vertexu ∈

V are

∥

∥∇+fk(u)
∥

∥

p
=





∑

v∼u,v∈Ak

wp/2
uv





1/p

χ∂+Ak(u) and

∥

∥∇−fk(u)
∥

∥

p
=





∑

v∼u,v∈Ak

wp/2
uv





1/p

χ∂−Ak(u) ,

(27)
whereχ : V → {0, 1} is the indicator function andAk ⊂
V is the set such thatfk = χAk .

Directly from (27) and by using the inner and outer
boundaries∂+Ak and∂−Ak (see [44] for the proof), one
obtains the following relation or any level setfk with 0 <
p < +∞:
∥

∥(∇fk)(u)
∥

∥

p
=
∥

∥(∇+fk)(u)
∥

∥

p
+
∥

∥(∇−fk)(u)
∥

∥

p
.

(28)
Equations (27) and (28) only consider theLp-norm

when0 < p < +∞. For the case wherep = ∞ one can
demonstrate and obtain same results by usingL∞-norms
expressions.

Dilation and erosion processes. A simple variational
definition of dilation applied tofk can be interpreted as
maximizing a surface gain proportional to the gradient
norm+

∥

∥(∇fk)(u)
∥

∥

p
. Similarly, erosion is a surface gain

minimization proportional to−
∥

∥(∇fk)(u)
∥

∥

p
.

Dilation of fk onAk can be expressed by the follow-
ing evolution equation:

∂fk(u)/∂t = +
∥

∥(∇+fk)(u)
∥

∥

p
,

where
∥

∥(∇fk)(u)
∥

∥

p
is reduced to

∥

∥(∇+fk)(u)
∥

∥

p
for u ∈

∂+Ak by using Equations (27) and (28). Similarly erosion
process can be expressed by:

∂fk(u)/∂t = −
∥

∥(∇−fk)(u)
∥

∥

p
.

Finally, by extending these two processes for all the
levels of f , we can obtain the two processes expressed
by Equations (26) and parametrized byp andw, over any
weighted graphG = (V, E, w):

δp,t(f) =
∂f

∂t
= +

∥

∥∇+f
∥

∥

p
and

ǫp,t(f) =
∂f

∂t
= −

∥

∥∇−f
∥

∥

p
.

5.2. Dilation algorithm

To solve the partial difference equations of dilation and
erosion processes, on the contrary to the PDEs case, no
spatial discretization is needed thanks to derivatives di-
rectly expressed in a discrete form. Then, one obtains the
general iterative scheme for dilation, at timet + 1, for all
u ∈ V ,

f t+1(u) = f t(u) + ∆t
∥

∥(∇+f t)(u)
∥

∥

p
. (29)

With the correspondingp values, the iterative scheme be-
comes for0 < p < +∞,

f t+1(u) = f t(u)+

∆t

(

∑

v∼u

w
p
2
uv

(

max
(

0, f t(v) − f t(u)
))p

)

1
p

,

(30)
and forp = ∞

f t+1(u) = f t(u)+

∆t max
v∼u

(√
wuv max

(

0, f t(v) − f t(u)
)

)

,

(31)
wheref0 ∈ H(V ) is the initial function defined on the
graph vertices,f (0)(u) = f0(u) is the initial condition,t
the iteration step, and∆t is the time discretization. The
extension to erosion process case can be established by
using the corresponding gradient∇−f .

5.3. Related schemes in image processing

With an adapted graph structure and an appropriated wei-
ght function, our propose morphological framework re-
covers well-known morphological methods in image pro-
cessing. For clarity, we only consider dilation but same



(a) Original (b) Localw = 1 (c) Local weighted (d) Nonlocal (e) Localw = 1 (f) Local weighted (g) Nonlocal

Figure 5. Image morphological processing with different graph topologies and weight functions. First row: dilation.
Second row: erosion.

remarks can be obtained for erosion.

Osher-Sethian discretization scheme. Whenp = 2 and
the weight function is constant (w = 1), Equation (30)
recovers the exact Osher-Sethian first order upwind dis-
cretization scheme [45] for a grayscale image defined as
f0 : V ⊂ R

2 → R. If the associated graph isG0 then,
with Equation (30) and the following property

(

max(0, a−
b)
)2

=
(

min(0, b − a)
)2

, we have:

f t+1(x, y) = f t(x, y)

+ ∆t
(

(

min
(

0, f t(x, y) − f t(x − 1, y)
))2

+

(

max
(

0, f t(x + 1, y)− f t(x, y)
))2

+
(

min
(

0, f t(x, y) − f t(x, y − 1)
))2

+

(

max
(

0, f t(x, y + 1) − f t(x, y)
))2
)

1
2

,

(32)
where vertexu ∈ V and its neighborhoodu ∼ v are re-
placed by their spatial image coordinates(x, y).

It corresponds exactly to the Osher and Sethian dis-
cretization scheme [45] of the PDEs-based dilation pro-
cess. Using this expression, the proposed morphological
framework can perform a sub-pixel approximation and re-
covers the notion of structuring elements [23]. For a unit
ball B =

{

z ∈ R
2 : ‖z‖p ≤ 1

}

, if we consider the three
special cases ofp = 1, 2,∞, one obtains an approxima-
tion of a square, circle and diamond.

Algebraic formulation . If we consider the neighborhood
of a vertexu ∈ V with the vertex itself and by studying
the sign of the quantityf t(v) − f t(u); when p = ∞,
with a constant time discretization (i.e.∆t = 1) and a
constant weight function (w = 1), Equation (31) recovers
the algebraic formulation of dilation over graphs.

f t+1(u) = max
v∼u

(

f t(v)
)

. (33)

In this case, the structuring element is provided by the
graph structure and the neighborhood of the vertices. For
instance, if we consider a8-adjacency image grid graph, it
is equivalent to a dilation by a square structuring element
of size3×3.

5.4. Experimentations in image processing

The following experimentations show the potentialities of
the proposed morphological framework for image process-

ing. The examples illustrate the flexibility and the abil-
ity of our method to perform different morphological pro-
cessing within a same formulation.

Image morphological processing. Figure 5 shows a com-
parison between local unweighted, local weighted and non-
local patch-based dilation and erosion. The graph associ-
ated with local processing is the4-adjacency grid graph
G0, where for the weighted case, the weight function is
w = g1 with F (f0, u) = f0(u). For the nonlocal case,
the graph isG3 associated with the weight functionw =
g1 where the feature vector isF1(f

0, u). These results
show that by using non constant weights, the proposed di-
lation and erosion better preserve edges as compared to
classical approaches. When a nonlocal configuration is
used fine structures and repetitive elements are better pre-
served.

Morphological processing for textured images. Fig-
ure 6 illustrates one of the novelties of our framework, the
application of nonlocal approach for morphological pro-
cessing. Figure 6 shows a comparison between local and
nonlocal closing. Closing can be defined as a serial com-
position of dilation (δ) and erosion (ε) operations. The
closing of a functionf is ε (δ(f)). Figure 6 shows clos-
ing of an corrupted image (Figure 6(b)) from the initial
Figure 6(a) with a Gaussian noise ofσ = 20. The local
closing is performed with the graphG0 and the associated
weight functionw = 1. For the nonlocal morphological
closing, the associated graph is10-NNG∪G1 (same con-
struction is defined in Figure 4(f)) where the feature vec-
tor isF3(f

0, u) and the patch distance is computed within
a 21×21 search window. This example clearly demon-
strates the efficiency of nonlocal patch-based methods to
better preserve frequent features during the morphological
process. Contrary to local ones that destroy fine structures
and repetitive elements.

6. DATA PROCESSING ON ARBITRARY GRAPH

Our regularization and MM frameworks work on graphs
of arbitrary topology. One of the advantages is that we
can use our methodology on any discrete data that can be
represented by a weighted graph. As a result, our formula-
tion provides a natural extension of PDEs-based methods
to process any discrete data even if they are defined in a
high dimensional domain.

In the sequel, through different experimentations and



(a) Original (b) Corrupted (c) Local (d) Nonlocal

Figure 6. Local versus nonlocal patch-based texture im-
age closing. First row: original and corrupted image with
Gaussian noise (σ = 20). Second row: local and nonlocal
closing results (See text for more details).

applications in regularization and morphological process-
ing, we show the potentialities of our approaches to pro-
cess unorganized high dimensional data set. Moreover,
we also show that another graph-based image representa-
tion can be used instead of usual pixel-based grid graph
leading to fast image processing.

The regularization process used in this section is the
neighborhood filter of Section 3.3 withp=2 andφ(s)=s2,
i.e. Laplacian smoothing.

6.1. Fast image processing on partitions

If we consider that image pixels are not the only rele-
vant elements, then more abstract structures can be used
such as image regions or superpixels [46]. We suggest
to work directly with reduced versions of images: image
partitions. Constructing image partitions can be viewed
as an image simplification or a data reduction process. To
obtain such image partitions, any well known image pre-
segmentation can be performed such as watershed tech-
niques.

In this paper, we use generalized Voronoi diagrams
(for more details see [47]). One of the advantages of this
method is the low computing time to obtain a complete
image partition. Indeed, the amortized time complexity of
a such method isO(E+V logV ) with Dikjstra algorithm
and Fibonacci heap structure. Then, the obtained parti-
tion can be associated with any graph topology such as
Region Adjacency Graph (RAG), proximity graphs or a
fully connected graph (G∞) where vertices represent im-
age regions. The function to be processed on such graphs
are defined at each vertex ofV as the mean value of its
associated region.

In the sequel, we show that with this image representa-
tion, one obtains similar processing behaviors than pixel-
based processing, but with a drastically decreasing com-
putation complexity. Due to the low computing time to
create an image partition, it can be neglected in the fol-
lowing experiments (e.g. to obtain partitions of an image
of size256×256 take less than1 sec. on a modern com-
puter1).

1All the results are obtained with a standard Linux computer
equipped with quadri2.4 GHz Intel Xeon processors and16 GB of
RAM, and the mentioned computing times include the graph construc-
tion itself.

(a) Original (b) Partition (98% of
reduction)

(c) Reconstructed im-
age

(d) Original +
Labels

(e) t = 50 (11
sec.)

(f) Original +
Labels

(g) t = 5 (< 1
sec.)

(h) Original +
Labels

(i) t = 2 (< 1
sec.)

(j) Original +
Labels

(k) t = 2 (< 1
sec.)

Figure 7. Semi-supervised image segmentation withp=2,
λ=1, t iterations for different graph structures and user
input strokes. (a), (b) and (c): original (152×181 pix-
els), partition, reconstructed images. (d), (f), (h) and
(j): user input labels. (e), (g), (i) and (k): original im-
age with the obtained segmented regions superimposed:
cytoplasm (red), nuclei (green) and regions boundaries
(black); the segmentation is performed with the specified
iteration stepst and the corresponding computation time.
The images (e), (g), (i) and (k) are respectively obtained
from label images (d), (f), (h) and (j). Graph structures
used to obtain results (e):G1,(g): RAG,(i) and (k):G∞.

Fast semi-supervised image segmentation. Image semi-
supervised segmentation are usually based on label diffu-
sion strategies on grid graphs [40, 41], such as the one
presented in Section 4. The drawback of this method is
that when the considered image is large, the label propa-
gation method is inefficient due to the great mass of data
to analyze. To avoid this computational problem, we pro-
pose to use image partitions [48].

Figure 7 shows the proposed semi-supervised cluster-
ing method applying to segment cytological images into
3 classes (nuclei, cytoplasm and background). This ex-
periment also show how partitions in addition of nonlo-
cal scheme can provide an efficient image segmentation
method. To this aim, the following experiment compares
on the one hand, computation time and the segmentation
results between a pixel-based grid graph, and two region-
based proximity graphs (RAG and fully connected graph);
and one the other hand, it shows the robustness of our ap-
proach regarding to initial user input labels. Figure 7(e) is
the semi-supervised segmentation result obtained from la-
bels of Figure 7(d) and an8-adjacency grid graph (G1) as-
sociated with the initial image (Figure 7(a)). In this case,
one can observe the number and the precise location of the
initial labels, in particular, the necessary labels between



the two cells. Figure 7(b) is a partition of Figure 7(a). One
can observe the important rate of reduction (98%) in term
of graph vertices. Figure 7(c) is a reconstructed image
from the partition where the pixel values of each region
of the partition are replaced by the mean pixel value of
its regions. With this simplified version, we construct two
proximity graphs: the RAG and the fully connected graph.
Figure 7(g) shows the segmentation result obtain from the
RAG with the same initial labels (Figure 7(f)) as in the
grid graph case. We can observe that the two results (Fig-
ures 7(g) and 7(e)) are similar but in the RAG-based seg-
mentation case, the computation time is significantly re-
duced. Figures 7(i) and 7(k) show the segmentation result
obtained from the fully connected graph. Using this graph
topology has several advantages. First, the graph contains
all the image information within the edge weights. Sec-
ond, a minimal number of labels is needed to obtain cor-
rect results as compared to the case of the grid-graph or
of the RAG. Third, this nonlocal approach has the impor-
tant property to quickly label objects in the same class,
even if they are not spatially adjacent or close. In Fig-
ures 7(i) and 7(k), the two main nuclei and cytoplasm are
segmented even if they have no initially been labeled, and
the two pieces of cytoplasm on the left and the piece of
cells on the top-left corner of the image are also found.
Finally, the robustness of our approach is shown by two
similar results (Figures 7(i) and 7(k)) with two different
user input labels (Figures 7(h) and 7(j)).

Fast image morphological processing. Figure 8 com-
pares the behavior of our image morphological processing
between pixel-based and partitions-based graphs.

Figure 8(b) shows an image partition obtained from
the initial image of Figure 8(a), and Figure 8(b) is a recon-
structed image from the partition. The initial image has
size 256×256, and the partition is a significant reduced
version (82% of reduction in term of vertices) as com-
pared to the original one. Figures 8(d) and 8(e) show di-
lation, erosion and closing respectively performed on the
4-adjacency grid graph associated to the original image
and on the RAG associated to the partition. Both cases
exhibit similar behaviors while the case of RAG reduces
drastically the computation complexity. This is due to the
reduced number of vertices to consider.

6.2. Processing of high dimensional unorganized data

In this section, we show one of the advantages of our for-
mulation, the application of regularization and mathemat-
ical morphology on high dimensional unorganized sets of
data. In the sequel, different experiments show the poten-
tialities of our methodology to smooth discrete data with
regularization or mathematical morphology, or to classify
data set by semi-supervised clustering.

Unorganized data set regularization. In the following
experiments, we consider two real-world high dimensional
data set. On the one hand, the United States Postal Ser-
vice (USPS) handwritten digits database and, on the other

(a) Original (b) Partition (c) Reconstructed im-
age

(d) dilation, erosion, closing onG0 with w=g1 andF (f0, ·)=f0

(e) dilation, erosion, closing on the RAG withw=g1 andF (f0, ·)=f0

Figure 8. Fast morphological image processing. (d): im-
age pixel based grid graph processing. (e): image parti-
tions based RAG processing.

(a) Original USPS digit 1 data set

(b) Regularization withλ = 0.5

(c) Regularization withλ = 0.01

(d) Regularization withλ = 0

Figure 9. USPS data set regularization. (b), (c) and (d):
results obtained with the correspondingλ parameter.

hand the UCI Wine database. USPS database contains
grayscale handwritten digit images scanned from digit0
to 9 where each image is of size16×16 pixels. Wine
database contains3 classes of samples in14-dimensions
and for each class59, 71, and48 samples. Coming from
the real-world, the data sets naturally contain noise, and
one wants to recover a denoised sub-data sets. To perform
this task, we use the proposed regularization process. Fig-
ures 9 and 10 show the regularization results obtain re-
spectively for the USPS and Wine data sets.

To perform regularization of USPS data set shown in
Figure 9, we use a randomly subsampled set of200 sam-
ples from the original 1 digit set. Figure 9(a) shows the
test data set. The fully connected graphG∞ is built with



(a) Original data set (b) Regularization results

Figure 10. UCI Wine data set regularization withp=2,
λ=0, andt=1. For simplicity, only Malic Acid, Ash, and
Ash Alkalinity features pairs projections are shown.

the weight functionw=g1. Each vertex of the graph cor-
responds to an image sample and is described by a256-
dimensions (R16×16) feature vector where each feature is
a pixel grayscale value. Figure 9 shows several regulariza-
tion results. One can note in these figures, that all samples
are strongly transformed, in particular when the fidelity
term λ=0 (Figure 9(d)). All samples become uniformly
identical and converge to an artificial mean digit sample.
Whenλ6=0, the samples are smoothed but the more dis-
similar ones preserve their main shape as shown in Fig-
ures 9(b) and 9(c). Figure 10 shows the regularization of
Wine database. Due to the high dimensionality of the data
set only few relevant feature pair projections are shown.
Each different color corresponds to a specific class for the
represented data set. The fully connected graph is built
on the data with the weight functionw=g2. Each vertex
of the graph corresponds to a data point and is described
by a14-dimensions feature vector. Figure 10(b) illustrates
that the data regularization has the interesting behavior to
naturally group all the samples in different parts of the
feature space in comparison with the initial organization
where they are completely mixed (Figure 10(a)).

These experiments show the potentialities of our me-
thod to process unorganized data. Finally, this data regu-
larization can be viewed as a data pre-processing that can
be used to improve the efficiency of final data classifica-
tion or machine learning methods.

Semi-supervised clustering for unorganized data infor-
mation retrieval . Starting from a user query, a classical
Information Retrieval (IR) task consists in matching ob-
jects stored in a database. Then, the system presents to
the user an ordered result depending on the relevance with
the initial query. In semi-supervised learning term, user
query is an unlabeled object, and the retrieved objects are
the more similar labeled objects contained in the database.

Figure 11 shows an IR application performed on the
USPS handwritten digits data set. For convenience, a sub-
set of the original database is used. The labeled set con-
sists into800 randomly selected elements from original
ones for all the digits (from0 to 9), i.e. the initial labeled
set is composed of8000 samples. All the elements are la-
beled with a corresponding digit class. Figure 11(i) shows

(a) (b) 50 first results

(c) (d) 50 first results

(e) (f) 50 first results

(g) (h) 50 first results

(i) Sample of the initial labeled data set

Figure 11. USPS image retrieval based on semi-
supervised clustering. (a), (c), (e) and (g): user input
query (unlabeled point). (b), (d), (f) and (h): 50 first ob-
tained results for the corresponding query. (i): sample
of the initial labeled data set, original one contains8 000
points.

250 elements of the initial labeled set. The sample query
is randomly selected from the unused elements. In this ex-
ample, we test the digit from0 to 3. Figures 11(a), 11(c),
11(e) and 11(g) show the initial input query: the unlabeled
data. The IR task consists in estimating and ranking the
more similar images from the labeled samples according
to the user query. In our experiment, we show the50 first
samples (Figures 11(b), 11(d), 11(f) and 11(h)) founded
by the semi-supervised clustering method and classified
according to Equation (25). The fully connected graph is
computed in connection with the weight functionw=g2.
The general parameters areλ=1, andt=1. As shown by
the results, one can notice the correctness of retrieved im-
ages from initial user query even with the use of simple
Euclidean distance.

Mathematical morphology processing for unorganized
data set. In the following experiments, as for the regu-
larization case, we show how our morphological frame-
work can be applied to process high dimensional unorga-
nized data sets. Figures 12 and 13 shows morphological
processing: dilation, erosion and opening on respectively
four independent synthetic unorganized data sets and the
USPS database. As for closing case, opening can be de-
fined as a serial composition of dilation (δ) and erosion (ε)
operations. The opening of a functionf is δ (ε(f)).

Figure 12 shows morphological openings performed
on four independent synthetic unorganized data sets. For
each set, we compute the8-NNG from the original data
with weight the functionw=g2. Figures 12(b) and 12(c)
show the results of dilation and erosion. Figure 12(d) the
opening operation. One can note that opening acts as fil-



(a) Four independent synthetic data
sets

(b) Dilation

(c) Erosion (d) Opening

Figure 12. Synthetic data set morphological processing

tering or denoising processes on the data, and works as
grouping operation where points tend to shrink into main
data structures.

Figure 13 shows the processing of USPS images database.
This experiment consists of100 samples randomly se-
lected and mixed from digits digit1 and3. Figure 13(a)
shows the original test set. From the original data, a30-
NNG is computed associated with the weight functionw=g1,
where each vertex of the graph corresponds to an image
sample and is described by a256-dimensions (R16×16)
feature vector where each feature is an image pixel grayscale
value. Figures 13(b) and 13(c) shows the dilatation and
erosion results. Figure 13(d) presents the opening result.
It shows that the opening tends to reduce the data set to
the main artificial digits.

This two experiments show that the application of mor-
phology on data sets can be useful for classification pur-
pose by extracting noiseless sub-data sets from noisy ones.

7. CONCLUSION

In this paper, we have presented a graph-based framework
that unifies local and nonlocal processing in the context of
gradient-based regularization and mathematical morphol-
ogy. This unification is achieved by defining explicitly
discrete derivatives over weighted graphs, and by choos-
ing the graph topology and geometry.

Through several experiments, we have shown the effi-
ciency of the proposed nonlocal regularizations and math-
ematical morphology processing. In particular, they better
preserve sharp edges, as well as fine and repetitive struc-
tures than local ones. The application of our methodology
to process unorganized data sets leads to a set of tools that
can be useful to denoise, smooth or simplify these data. It

(a) Original (b) Dilation

(c) Erosion (d) Opening

Figure 13. USPS data set morphological processing.

can be used as pre-processing steps in classification pro-
cesses.
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The work of Sébastien Bougleux was partially sup-
ported by ANR Grant SURF-NT05-2 45825.

9. REFERENCES

[1] L. Alvarez, F. Guichard, P-L. Lions, and J-M. Morel,
“Axioms and fundamental equations of image pro-
cessing,”Archive for Rational Mechanics and Anal-
ysis, vol. 123, no. 3, pp. 199–257, 1993.

[2] J. Weickert,Anisotropic Diffusion in Image Process-
ing, ECMI series. Teubner-Verlag, 1998.

[3] N. Paragios, Y. Chen, and O. Faugeras, Eds.,Hand-
book of Mathematical Models in Computer Vision,
Springer, 2005.

[4] G. Aubert and P. Kornprobst,Mathematical Prob-
lems in Image Processing, Partial Differential Equa-
tions and the Calculus of Variations, Number 147 in
Applied Mathematical Sciences. Springer, 2nd edi-
tion, 2006.

[5] G. Gilboa and S. Osher, “Nonlocal operators with
applications to image processing,” Report CAM 07-
23, UCLA, Los Angeles, 2007.



[6] G. Gilboa and S. Osher, “Nonlocal linear image
regularization and supervised segmentation,”SIAM
Multiscale Modeling and Simulation, vol. 6, no. 2,
pp. 595–630, 2007.

[7] S. Kinderman, S. Osher, and S. Jones, “Deblurring
and denoising of images by nonlocal functionals,”
SIAM Multiscale Modeling and Simulation, vol. 4,
no. 4, pp. 1091–1115, 2005.

[8] L.P. Yaroslavsky,Digital picture processing–an in-
troduction, Springer, 1985.

[9] J.S. Lee, “Digital image smoothing and the sigma
filter,” Computer Vision, Graphics, and Image Pro-
cessing, vol. 24, no. 2, pp. 255–269, 1983.

[10] C. Tomasi and R. Manduchi, “Bilateral filtering for
gray and color images,” inProc. of the 6th Int.
Conf. on Computer Vision (ICCV). 1998, pp. 839–
846, IEEE Computer Society.

[11] A. Buades, B. Coll, and J-M. Morel, “A review of
image denoising algorithms, with a new one,”Mul-
tiscale Modeling and Simulation, vol. 4, no. 2, pp.
490–530, 2005.

[12] F.R.K. Chung, “Spectral graph theory,”CBMS Re-
gional Conference Series in Mathematics, vol. 92,
pp. 1–212, 1997.

[13] M. Hein, J-Y. Audibert, and U. von Luxburg, “Graph
laplacians and their convergence on random neigh-
borhood graphs,”Journal of Machine Learning Re-
search, vol. 8, pp. 1325–1368, 2007.

[14] R. Coifman, S. Lafon, M. Maggioni, Y. Keller,
A. Szlam, F. Warner, and S. Zucker, “Geometries
of sensor outputs, inference, and information pro-
cessing,” inProc. of the SPIE: Intelligent Integrated
Microsystems, 2006, vol. 6232.

[15] A. Szlam, M. Maggioni, and R. Coifman, “A
general framework for adaptive regularization ba-
sed on diffusion processes on graphs,” Tech. Rep.
YALE/DCS/TR1365, YALE, 2006.

[16] L.I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,”Physica
D, vol. 60, no. 1-4, pp. 259–268, 1992.

[17] S. Osher and J. Shen, “Digitized PDE method for
data restoration,” inIn Analytical-Computational
methods in Applied Mathematics, pp. 751–771.
Chapman & Hall/CRC, 2000.

[18] T. Chan, S. Osher, and J. Shen, “The digital TV
filter and nonlinear denoising,”IEEE Trans. Image
Processing, vol. 10, no. 2, pp. 231–241, 2001.

[19] D.Y. Zhou and B. Scholkopf, “Regularization on
discrete spaces,” inGerman Pattern Recognition
Symposium. 2005, vol. 3663 ofLNCS, pp. 361–368,
Springer.

[20] S. Bougleux, A. Elmoataz, and M. Melkemi, “Dis-
crete regularization on weighted graphs for image
and mesh filtering,” in1st Int. Conf. on Scale
Space and Variational Methods in Computer Vision
(SSVM). 2007, vol. 4485 ofLNCS, pp. 128–139,
Springer.

[21] O. Lezoray, A. Elmoataz, and S. Bougleux, “Graph
regularization for color image processing,”Com-
puter Vision and Image Understanding, vol. 107, no.
1-2, pp. 38–55, 2007.

[22] A. Elmoataz, O. Lezoray, and S. Bougleux, “Non-
local discrete regularization on weighted graphs:
A framework for image and manifold processing,”
IEEE Transactions on Image Processing, vol. 17, no.
7, pp. 1047–1060, 2008.

[23] R.W. Brockett and P. Maragos, “Evolution equations
for continuous-scale morphology,” inIEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, 1992, vol. 3, pp. 125–128.

[24] P. Maragos, “PDEs for morphology scale-spaces and
eikonal applications,” inThe Image and Video Pro-
cessing Handbook, chapter 4.16, pp. 587–612. Else-
vier Academic Press, second edition, 2004.

[25] H. Heijmans, P. Nacken, A. Toet, and L. Vincent,
“Graph morphology,”Journal of Visual Communi-
cation and Image Representation, vol. 3, no. 1, pp.
24–38, March 1992.

[26] P. Soille,Morphological Image Analysis, Principles
and Applications, Springer, second edition, 2002.

[27] F. Meyer and R. Lerallut, “Morphological opera-
tors for flooding, leveling and filtering images using
grpahs,” inIn Proceedings of the 6th IAPR-TC-15
GbRPR, 2007, vol. 4538 ofLNCS, pp. 158–167.

[28] M. Requardt, “A new approach to functional analy-
sis on graphs, the connes-spectral triple and its dis-
tance function,” 1997.

[29] A. Bensoussan and J-L. Menaldi, “Difference equa-
tions on weighted graphs,”Journal of Convex Anal-
ysis, vol. 12, no. 1, pp. 13–44, 2005.

[30] J. O’Rourke and G. Toussaint, “Pattern recogni-
tion,” in Handbook of discrete and computational
geometry, chapter 51, pp. 1135–1162. Chapman &
Hall/CRC, 2004.

[31] A. Efros and T. Leung, “Texture synthesis by non-
parametric sampling,” inProc. of the International
Conference on Computer Vision (ICCV). 1999, pp.
1033–1038, IEEE Computer Society.

[32] C. Kervrann, J. Boulanger, and P. Coupé, “Bayesian
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