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Abstract— A tool for diagnosis assistance by automatic
segmentation of microscopic cellular images is introduced.
This method is based on an automatic segmentation tech-
nique combining (with the Dempster-Shafer rule) the results
obtained by Support Vector Machines (SVM) applied within
different color spaces. This combination is performed by
integrating uncertainties and redundancies for each color
space. Those uncertainties are computed asa posteriori
probabilities according to the SVM obtained results. An
improvement of the final segmentation quality is performed
by taking into account the inconsistencies of several pixel
classifications.

Index Terms— Segmentation, microscopic cellular images,
Classification, Dempster-Shafer combination, SVM

I. I NTRODUCTION

Microscopic image analysis is an important task in
cytopathology for the detection of abnormal cells in order
to establish a diagnosis. Actually, cells are evaluated
by a technician during a screening stage. Yet, visual
screening stage is a very difficult task and the low number
of abnormal cells with regards to the great number of
cells implies that the technician concentrates hard. In
that case, there can be false-negative cases due to the
subjective aspect of screening. To avoid this, one approach
consists in helping the technician by developing a semi-
automatic screening system to confirm the visual analysis.
Such a system is deeply linked to the used segmentation
scheme. For microscopic images containing cells, the
major problem lies in the spatial and the colorimetric
configuration of the nuclei and the cytoplasm. A particular
segmentation scheme can perform well for several images
but not for others. This is due to the fact that usually only
one scheme is applied in order to obtain a segmentation
result as close as possible to the ground truth.

From this remark, one intuitive way can be investigated:
as one can acheive a good segmentation scheme for sev-
eral images, one can use other schemes that are working
well for others images. In that case, a benchmark of an
exhaustive list of segmentation schemes is created. Then,
confidence measures can be associated to each one of the
schemes of the list. The main drawback of this approach is
that one has to be able to modify the confidence measure
with respect to the quality of the obtained results for
each microscopic image to be segmented. This means

that a classification process has been performed with
respect to the kind of microscopic images. Finally, the
best segmentation scheme is selected with respect to the
initial microcopic image group. This solution is time
consuming and is an heavy process.

Yet, another way can be investigated: one can select
a particular segmentation scheme that performs well, in
average. Microscopic images used in this paper have
been stained by with a specific preparation, known as
the international Papanicolaou coloration: nuclei are blue
and cytoplasm are green. Thus, color information included
in the image is important and has to be taken into
account. From this, the selected segmentation scheme can
be performed through different color spaces in order to
obtain different segmented maps. From these maps, a
fusion process can be achieved to obtain a final segmented
image. This method has the advantage to exploit existing
redundancies between the segmented maps to increase
the quality of the final segmentation map. Thus, the fol-
lowing process is proposed: one particular segmentation
scheme based on a pixel classification method is firstly
used through different colorimetric transformations. Then,
classified maps are fused to obtain a final classified image.

In this paper, the terms “segmentation” and “classifica-
tion” are indiscriminately used to represent the map obtain
after the classification step. Actually, a segmentation can
be obtained from a classification map when the connected
components of the map are labeled.

Figure 1 shows the proposed segmentation scheme [1].
The first step is to classify pixels through five selected
color spaces. Then,a posteriori probabilities are com-
puted and can be interpreted as a confidence measure
of the classification of a given pixel. The second step
is to categorize pixels in 1)coherent pixelswhen all
the classifiers select the same class, and 2)incoherent
pixels when at least one classifier response differs from
the others. Only incoherent pixels are processed through
a fusion method to select their final class. The final
segmentation map results from the union of the two pixel
sets.

The paper is organized as follows: in section II, the
trial color spaces are discussed. The used segmentation
scheme based on a classification approach is provided
in Section III. Section IV presents the process applied
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Fig. 1. Synopsis of the proposed segmentation scheme in which pk

represents thea posteriori probability computed within the k-th color
space.

to pixels considered as incoherent ones. The obtained
results are presented and discussed in section V. Section
VI concludes.

II. ON THE CHOICE OF THE TRIAL COLOR SPACES

The first step of the proposed scheme concerns the
colorimetric transformation of the initial coordinates sys-
tem,i.e., theRGB space. The question to investigate such
transformations is: does exist a color space in which the
representation of the color data is the best to optimally
perform the segmentation process ? Obviously, many
researches have shown that no color space significantly
outperforms the others [2]. Nevertheless, each color space
has been designed to outperform (under its own hypoth-
esis) the others. For example, theL∗a∗b∗ color space is
suitable to help a car manufacturer to measure small color
differences between two patterns of coachwork of car: are
the color of two cars, theoritically identical,visually the
same ?

From this remark, the segmentation process is per-
formed through four different colorimetric transforma-
tions. The results of this segmentation step are then fused
in order to obtain a final segmented image.

One common application of theRGB color model
is the display of colors on a cathode ray tube, liquid
crystal display or plasma display, such as a television or
a computers monitor. Each pixel on the screen can be
represented in the computer or interface hardware (for
example, a graphics card) as values for red, green and
blue. These values are converted into intensities which
are then used for display.

By using an appropriate combination of red, green and
blue intensities, many colors can be represented. Typical
display adapters in 2007 use up to 24 bits per pixel
(bpp) that represent 16 777 216 discrete combinations
of hue and intensity. It is claimed that the human eye
can distinguish as many as 10 million discrete hues (this
number varies from person to person depending upon the
condition of the eye and the age of the person). However,

at the resolution of current screens and at a standard
viewing distance people cannot distinguish more than a
few hundred hues. Almost all computer monitors around
the world useRGB.

The intention of theL∗a∗b∗ color space is to produce
a color space that is more perceptually linear than other
existing color spaces. Perceptually linear means that a
change of the same amount in a color value should
produce a change of about the same visual importance.
When storing colors in limited precision values, this
can improve the reproduction of tones.L∗a∗b∗ space is
relative to the whitepoint of the XYZ data they were
converted from.L∗a∗b∗ values do not define absolute
colors unless the whitepoint is also specified. In practice,
the whitepoint is assumed to follow a standard and not
explicitly stated (i.e., all ICC L∗a∗b∗ values are relative
to CIE standard illuminant D50).

Compared toRGB, it is often quicker to make efficient
color corrections inL∗a∗b∗. The fact that lightness is
completely disregarded in thea∗ and b∗ channels make
these much less sensitive to errors. Even though the num-
ber of possible numerical values for each pixel is smaller
in L∗a∗b∗ than for RGB, it is possible to reference a
much larger number of colors altogether inL∗a∗b∗ - not
only colors that cannot be described withRGB, but also
sometimes colors that do not appear at all in the real
world. In some cases this access to imaginary colors is
useful when one goes between several steps in image
processing.

The L∗a∗b∗coordinates system is the most complete
color model used conventionally to describe all the colors
visible to the human eye. It was developed for this specific
purpose by the International Commission on Illumination
(Commission Internationale d’Eclairage, hence its CIE
initialism).

TheYUV model defines a color space in terms of one
luma and two chrominance components.YUV is used in
the PAL system of colour encoding in analog video, which
is part of television standards in much of the world.YUV

models human perception of color more closely than the
standard RGB model used in computer graphics hardware,
but not as closely as theHSL color space.

The HSL color space (Hue, Saturation, Light-
ness/Luminance), is quite similar to theHSV space,
also known asHSB (Hue, Saturation, Brightness), with
”lightness” replacing ”brightness”. The difference is that
the brightness of a pure color is equal to the brightness
of white, while the lightness of a pure color is equal to
the lightness of a medium gray. TheHSL color space is
often used by artists because it is often more natural to
think about a color in terms of hue and saturation than in
terms of additive or subtractive color components.

The Y CbCr color space is a family of opponent color
spaces used in video systems.Y is the luma component
andCb andCr respectively represent two color difference
signals: blue minus Luma (B-Y) and red minus Luma
(R-Y). These two components are also called chroma
components. It is often confused with theYUV color
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space, and typically the termsY CbCr andYUV are used
interchangeably, leading to some confusion. In fact, in
this article, the termYUV does not refer toY CbCr.

As these color spaces have their own properties, it
would be useful to exploit them altogether in a whole
segmentation process in order to increase the quality of
the results.

III. SEGMENTATION BY PIXEL CLASSIFICATION.

From all existing segmentation schemes, an SVM-
based technique has been selected due to high classifi-
cation rates obtained in a previous work [3].

A. SVM Principle

SVMs were developed by VAPNIK ET AL . and are
based on the structural risk minimization principle from
statistical learning theory [4]. SVMs express predictions
in terms of a linear combination of kernel functions
centered on a subset of the training data, known as support
vectors (SV).

Given the training dataS = {(xi, yi)}i={1,...,m}
, xi ∈

Rn , yi ∈ {−1, +1}, SVM maps the input vectorx into
a high-dimensional feature spaceH through some non
linear mapping functionsφ : Rn → H, and builds an
optimal separating hyperplane in that space. The mapping
operationφ(·) is performed by a kernel functionK(·, ·)
which defines an inner product inH. The separating
hyperplane given by a SVM is:w · φ(x) + b = 0.
The optimal hyperplane is characterized by the maximal
distance to the closest training data (see Fig. 2 which
presents a 2D illustration of the SVMs principle). The
margin is inversely proportional to the norm ofw. Thus
computing this hyperplane is equivalent to minimize the
following optimization problem:

V (w, b, ξ) =
1

2
‖w‖2 + C

(
m∑

i=1

ξi

)
(1)

where the constraint∀m
i=1

: yi [w · φ (xi) + b] ≥ 1 −
ξi , ξi ≥ 0 requires that all training examples are correctly
classified up to some slackξ and C is a parameter
allowing trading-off between training errors and model
complexity.

This optimization is a convex quadratic programming
problem. Its whole dual [4] is to maximize the following
optimization problem:

W (α) =

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyjK (xi, xj) (2)

subject to∀m
i=1

: 0 ≤ αi ≤ C ,
∑m

i=1
yiαi = 0.

The optimal solutionα∗ specifies the coefficients for
the optimal hyperplanew∗ =

∑m

i=1
α∗

i yiφ (xi) and
defines the subsetSV of all support vector (SV). An
examplexi of the training set is a SV ifα∗

i ≥ 0 in
the optimal solution. The support vectors subset gives the
binary decision functionh:

h(x) = sign(f(x)) with f (x) =
∑

i∈SV

α∗

i yiK (xi, x)+ b∗

(3)

Fig. 2. Synopsis of the SVMs.

where the thresholdb∗ is computed via the unbounded
support vectors [4] (i.e., 0 < α∗

i < C). An efficient
algorithm SMO (Sequential Minimal Optimization) [5]
and many refinements [6], [7] were proposed to solve dual
problem. SVM being binary classifiers, several binary
SVM classifiers are induced for a multi-class problem.
A final decision is taken from the outputs of all binary
SVM [8].

Figure 3 shows the influence of the parameterσ for
a Gaussian kernel function on the shape of the initial
decision function. The greaterσ, the better the initial
decision function.

(a) Small value ofσ.

(b) Great value ofσ.

Fig. 3. Influence of the parameterσ on the final shape of the initial
decision function [9].
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B. Computation and use of the a posteriori probabilities

Since SVMs are binary classifiers, the resolution of a
multi-class problem is achieved through a combination of
binary problems [8]. In our case, three decision functions
are created to perform the classification process in three
classes{nucleus, background, cytoplasm} corresponding
to their one versus all discrimination. Yet, SVMs do
not directly providea posteriori classification probabil-
ities. Instead of estimating the class-conditional densities
p(f |y), a parametric model is used to fit the posteriori
p(y = 1|f) where f represents the uncalibrated output
value of SVMs. PLATT [10] has proposed a method to
compute thea posterioriprobabilities from the obtained
SVM parameters. The suggested formulae is based on a
parametric form of a sigmoı̈d as:

p(y = 1|f) =
1

1 + exp (Bf + C)
, (4)

where the parametersB and C are fit using maximum
likelihood estimation. These parameters are found by
minimizing the negative log likelihood of the training
data, which is a cross-entropy error function defined as:

min−
∑

i

ti log(pi) + (1 − ti) log(1 − pi) (5)

whereti = (yi + 1)/2 represents the target probabilities
from a new training set(fi, ti), and pi = 1/(1 +
exp (Efi + F )). This sigmoid model is equivalent to
assume the SVM outputs are proportional to the log odds
of a positive example.

A set of segmented images representing a ground truth
(i.e., a reference image) is used as training base. Each
of the three decision functions is trained on each of the
five color spaces. In that case, five segmentation maps
are generated where each pixel is associated to ana
posteriori probability pk for each class. This probability
can be interpreted as a belief measure associated to
each class and each color space in conjunction. Each
segmentation map (three for each color space) can be
considered as an information source that can be imprecise
and uncertain. The main idea consists in combining these
different sources using the theory of evidence (also known
as the Dempster-Shafer theory or the belief functions
theory) [11], [12], that yields, on the one hand to combine
information from many sources, and on the other hand to
process uncertain information.

IV. I NCOHERENT PIXEL PROCESSING.

In order to generate the final segmentation map, the
intersection of the obtained maps within each one of the
trial color spaces is achieved. Only incoherent pixels are
processed using the theory of evidence.

A. Elements of theory of evidence.

Let Ω = {ω1, . . . , ωN} be the set ofN possible final
classes for an incoherent pixel, called the frame of dis-
cernment. In our study,N = 3 andΩ corresponds to the
three final classes{ωb, ωc, ωs} respectively representing

the background of the image, the cytoplasm and the
nucleus. Instead of narrowing its measures to the set (as
performed by the theory of probability constrained by its
additivity axiom), the theory of evidence extends on the
power setΩ, labeled as2Ω, the set of the2N subsets
of Ω. Then, a mass functionm is defined and represents
the belief allowed to the different states of the system,
at a given moment. This function is also known as the
initial mass functionm(·) defined from2Ω in [0, 1] and
coroborating:

∑

A⊆Ω

m(A) = 1 et m(∅) = 0 (6)

where m(A) quantizes the belief that the search class
belongs to the subsetA ⊆ Ω (and to none other subset
of A). SubsetsA such asm(A) > 0 are referred to as
focal elements. A represents either a singletonωj or a
disjunction of hypothesis. In the case where the set of
hypothesis is exhaustive and exclusive, the mass of the
empty set is equal to 0.

Two initial mass functionsm1 and m2 representing
respectively the information providing from two indepen-
dent sources, can be combined according to Dempster’s
rule [11]:

m(A) =

∑
B∩C=A m1(B)m2(C)

1 − K
, ∀A ∈ 2Ω

A 6= ∅.
(7)

K is known as theconflict factor and represents the
discrepancy between the two sources. It corresponds to
the mass of the empty setK =

∑
B∩C=∅

m1(B)m2(C)
if the masses are not normalized. VOORBRAAK [13]
has justified the Dempster’s rule combination even if
the normalization step is criticized. The morek ≈ 1
and the more the combination of the sources is a non
sense. Whenk = 1, the fusion process is impossible
since the sources are considered in complete opposition.
Nevertheless, different solutions have been proposed to
process this conflict. SMETS [14] assumes, as DEMPSTER,
that the higher the conflict is, the worst the definition of
the frame of discernment is. In that case, the value of
k simply represents the mass assigned to one or several
hypotheses that have not been taken into account.

In this study, the normalization process,i.e. devided
the mass by the conflict term, is used. In that case, the
mass of the empty set is distributed among all the focal
elements.

One notes that Dempster’s combination, also known
as orthogonal sum and written asm = m1 ⊕ m2, is
commutative and associative.

After performing the combination, the decision as-
sociated to the most “probable” elementΩ has to be
quantified. Among the existing rules of decision, the
most commonly used is the maximum of the pignistic
probability. This decision rule, introduced by Smets [15]
uses the pignistic transformation that allows to distribute
the mass associated to a subset ofΩ over each one of its
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elements:

BetP(ω.m) =
∑

ω∈A⊆Ω

m(A)

|A|
, ∀ω ∈ Ω (8)

|A| is the cardinal ofA. The decision is executed from
the elements ofΩ the highest value of which is:

ω∗ = Arg

{
max
ω∈Ω

[BetP(ω, m)]

}
. (9)

B. Are the images adapted for the use of the theory of
evidence ?

In this subsection, one justifies that the theory of
evidence is well adapted to segment microscopic color
images. The following remarks can be formulated:

• The images are obtained using the same segmenta-
tion technique based on a pixel classification process
through different colorimetric transformation. The
same regions are observed many times and thus their
associated information are redundant,

• Each segmented image yield us to highlight relevant
regions that can differ from one image to another
one due to its color representation,

• The images are obtained from an acquisition chain
composed by an Olympus BX 50 microscope with a
Mrzhuser motorized autofocus scanning and a 3CCD
JVC KY-F75 camera connected to a computer by
IEEE 1394. Before attempting to acquire images,
the system needs to be allowed sufficient time to
warm up. To determine this thermal equilibrium, a
flat field image of a slide has been acquired every
5 minutes during three hours. By computing the
difference image between two successive flat field
images and taking the mean gray value of the whole
difference image, we can plot the time course of
color values after the system has been switched
on. The data indicates that the thermal stabilization
of the system has been located after 90 minutes
(only 0.1 mean gray level of difference). The 90
min warming-up period was therefore used in our
experiments. The lighting level of the microscope
can be modified by the user, but we have fixed it
to a constant electric tension which correspond to
the D65 illuminant. Once the lighting level has been
fixed, the user can adjust the microscope condenser
aperture which levels the amount of light passing
through the optical lens. A fixed value being more
suitable for reproductibility, the aperture has been
fixed to 0.25. Therefore, acquiring an image is al-
ways performed under constant optical conditions
ensuring reproducibility of the further segmentation
results. Due to this acquisition step, the obtained
images are noisy,i.e., imprecise and uncertain.

Those several constatations let us assume that the frame
of the theory of evidence can help us in the refinment of
the microscopic color images segmentation process.

C. Mass function design

One of the main drawbacks of the theory of evidence
is the design of mass functions: the quality of the fusion
process depends on the quality of the mass function.
Among all existing modelisations, two models have been
compared : 1) the one proposed by DENŒUX [16] has
been retained in our study on account of its integration of
both the distance to the neighboors and different criteria
of neighborhood (e.g., mean luminance, emergence,...) in
its definition and 2) the one introduced by APPRIOU [17]
based on a likelihood function.

1) DENŒUX’s model: The massm({ωj}) is defined
as a decreasing function of the distanced between the
pixel to classify and the barycenter of the class:

{
m(ωl) = α exp (−γld

2)
m(Ω) = 1 − m(ωl)

(10)

where 0 < α < 1 is a constant computed from the
obtaineda posterioriprobabilities provided by the SVMs
output for the classωl within the trial color spaces. In
that case,α = pk(ωl). γl depends on the classωl and is
computed by minimization of an error criterion using the
EM algorithm.

2) APPRIOU’s model: This model is based on like-
lihood functionsL(ωl|X) satisfying three axioms [18]:
1) the consistency with the Bayesian approach, 2) the
separability of the evaluation of the hypothesesHn and
3) the consistency with the probabilistic association of
sourcesSj .

The a priori probability functionf(X |ωl) is supposed
to be known. The conditional likelihood associated to a
patternx could be defined byL(ωl|X) = f(X |ωl). In
this article, each class is assumed to be modeled by a
Gaussian distribution. In that way, the conditional density
function is

f(X |ωl) =
1

(2π)p/2|
∑

l |
−1/2

.e−1/2(x−µl)
T∑−1

l (x−µl)

(11)
whereµl represents the mean vector and

∑
−1

l the inverse
covariance matrix associated to the hypothesisωl.

According to [18], one model is the most consis-
tent with the Generalized Bayes Theorem introduced by
SMETS. Each information sourcesSj is associated to N
elementary mass function defined by :






mlj(ωn) = 0
mlj(ω̄n) = αnj(1 − Rj .L(ωn|xj))
mlj(Ω) = 1 − m(ω̄n)

(12)

whereRj is a normalization factor defined by

Rj ∈ [0, (sup
xj

max
l∈[1,...,N ]

{L(ωn|xj))
−1}],

andαj is a reliability factor depending on he hypothesis
ωl and on the sourceSj . If the confidence during the
training phase is high,αj = 1. Otherwiseαj = 0.9 [19].

A massm is finally obtained from the orthogonal sum
of the bbasmlj:

m(.) = ⊕j ⊕l mlj(.) (13)
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The p likelihood functionsL(ωl|xp) are estimated by
means of the EM algorithm while preserving a same
frame of discernment for each information source.

3) design of the mass function:For both the models,
the five initial mass functions(mk)k∈[1,...,5] are generated
after computing theq candidate regions to the fusion
process and before the decision induced by the majority
vote. Thus, considering one segmentation map, one pixel
associated to one class from{ωb, ωc, ωs} can be associ-
ated to a subset of classes corresponding at most toΩ. In
order to generate such a subset, the affectation constraint
has to be loosened. One way to perform that is to generate
an interval computed from the maximum value of thea
posteriori probabilities to generate the subsetA such as:

A = {ωl ∈ Ω/

max(pk(ωl)) − δk ≤ pk(ωl) ≤ max(pk(ωl))}(14)

where k ∈ {1, . . . , 5} and δk is an ad-hoc constant
depending on the perceptual sensitivity of each one of
the five trial color spaces. All the classes for which
their probabilities are included within this new interval
are considered as candidates for classification during the
fusion process.

The five mass functions yield to take into account the
associated uncertainty to each one of the segmentation
maps. Thus, close classes are brought together in the same
focal element, and the final decision is taken only after
combining the obtained results from other projections.

Concerning the DENŒUX’s model, two distance formu-
las have been investigated: 1) the Euclidean and 2) the

Mahalanobis given byd =
√

(x − µl)T
∑

−1

l (x − µl).
When using the Euclidean distance, the formulae given

in 1994 by the Commission Internationale de l’Eclairage
(CIE) within theRGB color space has been used. Even
if the computation of the distance between colors has to
be performed within a perceptual color space different
from the RGB coordinates system, the initial formulae
is defined for short distance, and has not been validated
for long distance. Nevertheless, this formulae has the
avantage to be defined by the CIE and, in that way,
guarantees the best perceptual color difference.

V. EXPERIMENTAL RESULTS

A. Segmentation Quality Measure

When a ground truth image is available, quality mea-
sures usually integrate at least a factor to take into account
the region size and another one to compute the recovery
rate between the regionsRi of the segmented imageI and
the regionsVj of the groundtruth imageJ . Among all the
proposed quality metrics, the one developed by MARTIN

[20] has been used because this metric is insensitive to
the granularity variation levels induced by the manual
segmentation produced by different experts. Indeed, even
if two human observers have the same perceptual orga-
nization of an image, they may choose to segment it at
different levels (e.g., a bird can be segmented as only
one object or as a set of many sub-objects containing the

beak and the rest of the body, and so on.). This measure
is based on the computed errorE(s) on each pixel as:

E(s) =
card(Vj\Ri)

card(Vj)
and E′(s) =

card(Ri\Vj)

card(Ri)
.

(15)
The disimilarity measure is provided by the local consis-
tency error as the segmentation quality measure:

LCE(I, V ) =
1

h × w

∑

s

min{E(s), E′(s)} (16)

where h and w respectively denotes the image height
and width. The lower the LCE value, the better the
segmentation quality is.

In addition, a recognition rate (RR) is used to measure
the performance of the proposed scheme. This measure
allows to know how many pixels have been classified as
the expert does.

B. Results

The proposed technique has been applied to an image
database containing 50 microscopic cell images. Figure
4 presents a panel of four selected images from the
database. One observes that the background of the images
varies from quite homogeneous (Fig. 4(d)) to highly
textured (Fig.4(b)). The number of pixels corresponding
to the background, the cytoplasm and the nuclei is not
balanced across images: 89% of pixels are located to
cytoplasm, 7% concerns the cytoplasm and only 4% of
pixels represents nuclei.

Figure 5 shows the difference maps obtained between
the classified map and the ground truth one (Fig. 5(b))
from the five trial color spaces (Fig. 5(c) to Fig. 5(g))
and the map of incoherent pixels (Fig. 5(h)) obtained
after the intersection of the segmentation maps through
colorimetric transformations and before processing the
pixels labelled to as incoherent. For Fig. 5(c) to Fig. 5(g),
the white pixels correspond to an incorrect classification
while the black ones correspond to a correct classification
with respect to the ground truth. In Fig. 5(h), incoherent
pixels are black ones.

One can observe from Figure 5(h) that major disagree-
ments are very close to cytoplasm and nuclei boundaries.
Furthermore, one can observe that concerning the pixels
that have been misclassified (white pixels within Fig 5(c)
to Fig. 5(g)), the error is the same in each case. In that
case, the classification is incorrect but not incoherent since
all the five classifiers have selected the same but wrong
class.

Table I presents 1) the mean (in percentage) of correctly
and incorrectly classified pixels and 2) the mean (in
percentage) of incoherent pixels for each one of the
trial color spaces and all the images of the ground truth
database. For example, one can observe that, forL∗a∗b∗,
only a limited percentage of pixels have been incoherently
classified (about 3.38%). The segmentation quality gain
can only be obtained from these pixels. Actually, even if
86.52% pixels have been correctly classified, 9.1% remain
incorrectly classified. This misclassification cannot be
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(a) (b)

(c) (d)

Fig. 4. Panel of four representative images of the used database.

(a) Original Image. (b) The ground truth image.

(c) Segmented map obtained from
the L

∗
a
∗
b
∗ color space.

(d) Segmented map obtained from
the RGB color space.

(e) Segmented map obtained from
the HSL color space.

(f) Segmented map obtained from the
Y CbCr color space.

(g) Segmented map obtained from
the YUV color space.

(h) Map of incoherent pixels.

Fig. 5. Location of the incoherent pixels after intersecting the five segmentation maps. For Fig. 5(c) to Fig. 5(g), the white pixels correspond to
an incorrect classification while the black ones correspondto a correct classification with respect to the ground truth.In Fig. 5(h), incoherent pixels
are black ones.
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corrected at this stage since all classifiers have selected
the same but wrong class. TheY CbCr color space is the
best color space in terms of possible correct classification,
since theoritically one can reach a correct classification
rate equal to 91.2%. Nevertheless, the spatial distribution
of incoherent pixels differs from a color space to another
one. In that case, it’s quite impossible to choose only one
color space. Performing a fusion process applied to the
incoherence maps from the five color spaces may be yield
us to reach higher classification rates.

correct incorrect incoherent
L
∗
a
∗
b
∗ 87.52± 5.97 9.1 ± 4.21 3.38± 0.96

RGB 78.33± 4.72 10.2± 3.93 11.47± 0.75
HSL 87.11± 5.01 9.5 ± 4.12 3.39± 0.80
Y CbCr 87.45± 6.10 8.8 ± 5.20. 3.75± 0.68
YUV 86.78± 5.87 10.3± 4.25 2.92± 0.84

TABLE I

MEAN OF CORRECTLY, INCORRECTLY AND INCOHERENTLY

CLASSIFIED PIXELS WITH RESPECT TO THE GROUND TRUTHS FOR

ALL IMAGES AND FOR EACH COLOR SPACES.

Mean of the RR Mean of MQ
SVM 87.52± 5.97 0.43± 0.03

Denœux (d1) 88.99± 5.54 0.40± 0.03
Denœux (d2) 92.45± 4.78 0.37± 0.04

Appriou 87.68± 5.23 0.42± 0.04

TABLE II

MEAN OF 1) THE RECOGNITIONRATE (RR) AND 2) OF THE MARTIN

QUALITY (MQ) MEASURE FOR THESVM-BASED SEGMENTATION

SCHEME AND THE PROPOSED ONE BASED ON THEDENŒUX’ S

MODEL INTEGRATING 1) THE EUCLIDEAN DISTANCE (d1) AND 2)

THE MAHALANOBIS ONE (d2), AND THE ONE BASED ON THE

APPRIOU’ S MODEL

Table II shows the mean of the obtained correct clas-
sification rates from the database from 1) SVMs, the
proposed combination method based on the Denœux’s
model using 2) the Euclidean distance (d1) and 3) the
Mahalanobis distance (d2), and the combination scheme
based on the APPRIOU’s model. SVMs have been trained
on a training database where the 20 images are different
from those contained within the test database. From
the obtained results, one can state that the combination
process used in the proposed segmentation scheme outper-
forms the SVM-based segmentation scheme. Actually, the
incoherence is mainly due to a disagreement obtained for
the classification of pixels located in cytoplasm or nuclei.
That means that for images containing a great number of
pixels labeled to as “background”, the classification rate is
initially high. In that case of images, the expected quality
gain will not be significant since only a few number of
pixels located around cytoplasm and nuclei boundaries
will be labeled to as “incoherent” pixels. In other words,
only a few number of pixels will be processed applying
the proposed method. The quality gain depends on the
number or processed pixels: the higher the number of
processed pixels, the higher the quality gain.

Considering the three proposed combination schemes,
the one based on the DENŒUX’s model implementing
the Mahalanobis distance provides the best recognition
rate (92.45%). Comparing to the theoritically best score
obtained from the “best color space” (91.2% forY CbCr),
one shows that evidence theory is very promising to seg-
ment microscopic color images very carefully. Actually,
the obtained recognition rates is greater that the results
obtained from only one color space (even if it is the
“best”).

Since the quality gain essentially concerns the classi-
fication of pixels around cytoplasm and nuclei bound-
aries, the segmentation quality for cytoplasm and thus
for nucleus too, increases, and consequently the global
segmentation quality.

In addition, using the distanced2, the mean recognition
rate as well as the mean segmentation quality increase
according to the use of the distanced1. This is mainly
due to the fact that the distanced2 takes into account
the dispersion of the two compared spatio-colorimetric
clouds.

VI. CONCLUSION

A tool for diagnosis assistance by automatic segmen-
tation of microscopic cellular images is proposed. The
used segmentation scheme is based on a pixel classi-
fication technique developped by VAPNIK known to be
the SVMs. This choice is justified by two criteria: 1) a
high classification rate and 2) a fast pixel classification
process. The main idea of the method is to process the
pixels for which at least one disagreement of classification
is observed. This allows us to introduce uncertainty on
the initial SVM-based segmentation processes. In order to
construct different segmentation maps, the SVMs are ap-
plied through five different colorimetric transformations.
This allows us to take into account the characteristics of
each color space. From those five segmentation maps, an
a posterioriprobability is computed which is considered
as a belief function associated to each class. Then, an
intersection map is generated to detect pixels for which
at least one disagreement of classification is observed.
Only incoherent pixels are processed under the theory
of evidence constraint to determine their final class.
Depending on the used distance measure, the final results
show that the proposed method outperforms the SVM-
based segmentation technique. Results shows that when
using a distance that takes into account the neigborhood,
the correct classification rate increases.
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