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Abstract— A tool for diagnosis assistance by automatic that a classification process has been performed with
segmentation of microscopic cellular images is introduced respect to the kind of microscopic images. Finally, the

This method is based on an automatic segmentation tech- agt segmentation scheme is selected with respect to the
nique combining (with the Dempster-Shafer rule) the resuls . itial mi L Thi luti is ti
obtained by Support Vector Machines (SVM) applied within ~ 'Mti@l MICrocopic image group. This solution is time

different color spaces. This combination is performed by Cconsuming and is an heavy process.
integrating uncertainties and redundancies for each color Yet, another way can be investigated: one can select

space. Those uncertainties are computed aa posteriori g particular segmentation scheme that performs well, in
probabilities according to the SVM obtained results. An 4yerage. Microscopic images used in this paper have
improvement of the final segmentation qyallty is perform(_ed been stained by with a specific preparation, known as
by taking into account the inconsistencies of several pixel . - - . »n
classifications. the international Papanicolaou coloration: nuclei areeblu
and cytoplasm are green. Thus, color information included
in the image is important and has to be taken into
account. From this, the selected segmentation scheme can
be performed through different color spaces in order to
. INTRODUCTION obtain different segmented maps. From these maps, a

Microscopic image analysis is an important task infusion process can be achieved to obtain a final segmented
cytopathology for the detection of abnormal cells in ordefimage. This method has the advantage to exploit existing
to establish a diagnosis. Actually, cells are evaluatededundancies between the segmented maps to increase
by a technician during a screening stage. Yet, visuathe quality of the final segmentation map. Thus, the fol-
screening stage is a very difficult task and the low numbelowing process is proposed: one particular segmentation
of abnormal cells with regards to the great number oscheme based on a pixel classification method is firstly
cells implies that the technician concentrates hard. lmused through different colorimetric transformations. ihe
that case, there can be false-negative cases due to tbkassified maps are fused to obtain a final classified image.
subjective aspect of screening. To avoid this, one approach In this paper, the terms “segmentation” and “classifica-
consists in helping the technician by developing a semition” are indiscriminately used to represent the map obtain
automatic screening system to confirm the visual analysisfter the classification step. Actually, a segmentation can
Such a system is deeply linked to the used segmentatidre obtained from a classification map when the connected
scheme. For microscopic images containing cells, theomponents of the map are labeled.
major problem lies in the spatial and the colorimetric Figure 1 shows the proposed segmentation scheme [1].
configuration of the nuclei and the cytoplasm. A particularThe first step is to classify pixels through five selected
segmentation scheme can perform well for several imageslor spaces. Thera posteriori probabilities are com-
but not for others. This is due to the fact that usually onlyputed and can be interpreted as a confidence measure
one scheme is applied in order to obtain a segmentatioof the classification of a given pixel. The second step
result as close as possible to the ground truth. is to categorize pixels in 1foherent pixelswhen all

From this remark, one intuitive way can be investigatedthe classifiers select the same class, andn2pherent
as one can acheive a good segmentation scheme for seuxels when at least one classifier response differs from
eral images, one can use other schemes that are workitige others. Only incoherent pixels are processed through
well for others images. In that case, a benchmark of am fusion method to select their final class. The final
exhaustive list of segmentation schemes is created. Thesgegmentation map results from the union of the two pixel
confidence measures can be associated to each one of geds.
schemes of the list. The main drawback of this approachis The paper is organized as follows: in section I, the
that one has to be able to modify the confidence measuteial color spaces are discussed. The used segmentation
with respect to the quality of the obtained results forscheme based on a classification approach is provided
each microscopic image to be segmented. This mearns Section Ill. Section IV presents the process applied

Index Terms— Segmentation, microscopic cellular images,
Classification, Dempster-Shafer combination, SVM
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at the resolution of current screens and at a standard
viewing distance people cannot distinguish more than a
few hundred hues. Almost all computer monitors around
the world useRGB.
The intention of theL*a*b* color space is to produce
a color space that is more perceptually linear than other
Seammtetion existing color spaces. Perceptually linear means that a
change of the same amount in a color value should
produce a change of about the same visual importance.
When storing colors in limited precision values, this
can improve the reproduction of tones*a*b* space is
| relative to the whitepoint of the XYZ data they were
T converted from.L*a*b* values do not define absolute
o colors unless the whitepoint is also specified. In practice,
the whitepoint is assumed to follow a standard and not
Fig. 1. Synopsis of the proposed segmentation scheme inhwhic  explicitly stated {.e., all ICC L*a*b* values are relative
;eppars(:ents the posteriori probability computed within the K color to CIE standard illuminant D50).
Compared taRGB, it is often quicker to make efficient
color corrections inL*a*b*. The fact that lightness is
to pixels considered as incoherent ones. The obtainecbmpletely disregarded in the and b* channels make
results are presented and discussed in section V. Sectitilese much less sensitive to errors. Even though the num-
VI concludes. ber of possible numerical values for each pixel is smaller
in L*a*b* than for RGB, it is possible to reference a
II. ON THE CHOICE OF THE TRIAL COLOR SPACES much larger number of colors altogetheriiria*b* - not
h(gnly colors that cannot be described witzB, but also
sometimes colors that do not appear at all in the real
hworld. In some cases this access to imaginary colors is
éjseful when one goes between several steps in image

The first step of the proposed scheme concerns t
colorimetric transformation of the initial coordinatesssy
tem,i.e., the RGB space. The question to investigate suc
transformations is: does exist a color space in which th

representation of the color data is the best to optimallP"°¢®SsIng- - _ _
perform the segmentation process ? Obviously, many The L*a*b*coordinates system is the most complete

researches have shown that no color space significantPlor model used conventionally to describe all the colors
outperforms the others [2]. Nevertheless, each color spacésible to the human eye. It was developed for this specific

has been designed to outperform (under its own hypothRUrPose by the International Commission on Illlumination
esis) the others. For example, théa*b* color space is (Commission Internationale d’Eclairage, hence its CIE

suitable to help a car manufacturer to measure small coldpitialism).

differences between two patterns of coachwork of car: are The YUV model defines a color space in terms of one
the color of two cars, theoritically identical,visuallyeth luma and two chrominance componertslV' is used in
same ? the PAL system of colour encoding in analog video, which

From this remark, the segmentation process is pets part of television standards in much of the woitd/V/
formed through four different colorimetric transforma- models human perception of color more closely than the
tions. The results of this segmentation step are then fuseégandard RGB model used in computer graphics hardware,
in order to obtain a final segmented image. but not as closely as thH SL color space.

One common application of th&GB color model The HSL color space (Hue, Saturation, Light-
is the display of colors on a cathode ray tube, liquidness/Luminance), is quite similar to th€SV space,
crystal display or plasma display, such as a television oglso known asiSB (Hue, Saturation, Brightness), with
a computers monitor. Each pixel on the screen can bdightness” replacing "brightness”. The difference is tha
represented in the computer or interface hardware (foihe brightness of a pure color is equal to the brightness
example, a graphics card) as values for red, green aref white, while the lightness of a pure color is equal to
blue. These values are converted into intensities whickhe lightness of a medium gray. TH&S L color space is
are then used for display. often used by artists because it is often more natural to

By using an appropriate combination of red, green andhink about a color in terms of hue and saturation than in
blue intensities, many colors can be represented. Typicd¢rms of additive or subtractive color components.
display adapters in 2007 use up to 24 bits per pixel TheY C,C,. color space is a family of opponent color
(bpp) that represent 16 777 216 discrete combinationspaces used in video systems.is the luma component
of hue and intensity. It is claimed that the human eyeandC}, andC, respectively represent two color difference
can distinguish as many as 10 million discrete hues (thisignals: blue minus Luma (B-Y) and red minus Luma
number varies from person to person depending upon th@-Y). These two components are also called chroma
condition of the eye and the age of the person). Howevegomponents. It is often confused with tH&/V color
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space, and typically the term&C,C,. andYUV are used
interchangeably, leading to some confusion. In fact, in
this article, the ternYUV does not refer td”C,C,..

As these color spaces have their own properties, it
would be useful to exploit them altogether in a whole
segmentation process in order to increase the quality o
the results.

IIl. SEGMENTATION BY PIXEL CLASSIFICATION.

From all existing segmentation schemes, an SVM-
based technique has been selected due to high classil
cation rates obtained in a previous work [3]. =1 1) =0

A. SVM Principle Fig. 2. Synopsis of the SVMs.
SVMs were developed by APNIK ET AL. and are
based on the structural risk minimization principle from

statistical learning theory [4]. SVMs express predictionsynere the threshold* is computed via the unbounded
in terms of a linear combination of kernel functions gypnort vectors [4]ife, 0 < of < O). An efficient

centered on a subset of the training data, known as suppffgorithm SMO (Sequential Minimal Optimization) [5]
vectors (SV). and many refinements [6], [7] were proposed to solve dual
Given the training dat& = {(xi,4i)}i—(1....m}» ¥ €  problem. SVM being binary classifiers, several binary
R™ ,yi € {=1,+1}, SYM maps the input vector into gy classifiers are induced for a multi-class problem.
a high-dimensional feature spa# through some non A fina decision is taken from the outputs of all binary
linear mapping functiong : R" — H, and builds an gy 8.
optimal separating hyperplane in that space. The mapping
operationg(-) is performed by a kernel functiok (-, -)
which defines an inner product il. The separating
hyperplane given by a SVM isw - ¢(z) + b = 0.
The optimal hyperplane is characterized by the maxima
distance to the closest training data (see Fig. 2 which
presents a 2D illustration of the SVMs principle). The
margin is inversely proportional to the norm af Thus
computing this hyperplane is equivalent to minimize the
following optimization problem:

V(w,b,€) = %HwIIQ +C (Z@) (1)

i=1

Figure 3 shows the influence of the parametefor

a Gaussian kernel function on the shape of the initial

decision function. The greater, the better the initial
ecision function.

where the constraint™, : y;[w-¢(z;) +b > 1 —
&, & > 0requires that all training examples are correctly
classified up to some slack and C is a parameter
allowing trading-off between training errors and model
complexity.

This optimization is a convex quadratic programming
problem. Its whole dual [4] is to maximize the following
optimization problem:

m 1 m
W(a) = ;ai ~3 i;I ooy K (2, x5) (2)
subject tovV?, : 0 < a; <C, >y = 0.

The optimal solutiono™ specifies the coefficients for
the optimal hyperplanev* = Y I" ofy;¢(z;) and
defines the subsefV” of all support vector (SV). An
examplez,; of the training set is a SV ik} > 0 in
the optimal solution. The support vectors subset gives the
binary decision functiorh:

. . Fig. 3. Influence of the parameter on the final shape of the initial
h(x) = sign(f(z)) with f (z) = Z a;yi K (x4, )+ yedision function [9].
i€eSV
®3)

(b) Great value of.
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B. Computation and use of the a posteriori probabilitiesthe background of the image, the cytoplasm and the

Since SVMs are binary classifiers, the resolution of ahucleus. Instead of narrowing its measures to the set (as
multi-class problem is achieved through a combination of€rformed by the theory of probability constrained by its
binary problems [8]. In our case, three decision functiongdditivity axiom), the theory of evidence extends on the
are created to perform the classification process in threBOWer set@, labeled a2, the set of the2” subsets
classes{nucleus, background, cytopla$morresponding of Q. T_hen, a mass functlom is defined and represents
to their one versus all discrimination. Yet, SVMs do the belief allowed to the different states of the system,
not directly providea posteriori classification probabil- at @ given moment. This function is also known as the
ities. Instead of estimating the class-conditional déssit initial mass functionm(-) defined from2® in [0, 1] and
»(fly), a parametric model is used to fit the posterioricOroborating:

p(y = 1|f) where f represents the uncalibrated output
value of SVMs. RATT [10] has proposed a method to > m(A) =1 et m(0)=0 (6)
compute thea posteriori probabilities from the obtained ACQ

SVM parameters. The suggested formulae is based on a ) )
parametric form of a sigmoid as: where m(A) quantizes the belief that the search class

belongs to the subset C Q2 (and to none other subset
ply=1|f) = 1 , (4) of A). SubsetsA such asm(A) > 0 are referred to as
l+exp(Bf+0C) focal elementsA represents either a singletory or a
where the parameterB and C are fit using maximum disjunction of hypothesis. In the case where the set of
likelihood estimation. These parameters are found byypothesis is exhaustive and exclusive, the mass of the
minimizing the negative log likelihood of the training empty set is equal to 0.
data, which is a cross-entropy error function defined as: Two initial mass functionsn; and m, representing
. respectively the information providing from two indepen-
= Zti log(pi) + (1 —ti)log(L —pi)  (5)  gent sources, can be combined according to Dempster’s
’ rule [11]:
wheret; = (y; + 1)/2 represents the target probabilities
from a new training set(f;,t;), and p; = 1/(1 +
exp (Ef; + F)). This sigmoid model is equivalent to
assume the SVM outputs are proportional to the log odds

of a positive example. g is known as theconflict factor and represents the

A set of segmented images representing a ground truth. b h d
(ie., a reference image) is used as training base. Eaq iscrepancy between the two sources. It corresponds to
0]; t.r,1e three decision functions is trained on each bf théhe mass of the empty S& = 3_ 5oy m1(B)ma (C)
. . X if the masses are not normalized OURBRAAK [13]
five color spaces. In that case, five segmentation mapns

. . : as justified the Dempster's rule combination even if
are generated where each pixel is associated ta an o . .
o o . .. the normalization step is criticized. The moke~ 1
posteriori probability p;, for each class. This probability S .
. . . nd the more the combination of the sources is a non
can be interpreted as a belief measure associated

0
each class and each color space in conjunction. Eac

m(A) = ZBnc=1 mlf((B)mz(C), VAe22  (7)
1= A#0.

ense. Wherk = 1, the fusion process is impossible

since the sources are considered in complete opposition.

e St a7 ) o everteess iferent olons e been proposed t
P ocess this conflict. BETS [14] assumes, asSEMPSTER

and uncertain. The main idea consists in combining thesg1

different sources using the theory of evidence (also know at the higher the conflict is, the worst the definition of
9 Y . OWlhe frame of discernment is. In that case, the value of
as the Dempster-Shafer theory or the belief function

) ) 7{ simply represents the mass assigned to one or several
theory) [11], [12], that yields, on the one hand to Comb'n%ypotﬁgsespthat have not been takgn into account.

information from many sources, and on the other hand to ) o . .
In this study, the normalization proceds. devided

rocess uncertain information. ; .
P the mass by the conflict term, is used. In that case, the
IV. | NCOHERENT PIXEL PROCESSING (rar::;seg:sthe empty set is distributed among all the focal

i In ordgr to generate_ the final segm_entation map, the One notes that Dempster's combination, also known
intersection of the obtained maps within each one of the, ¢ orthogonal sum and written as — my & ma, is

trial color spaces is achieved. Only incoherent pixels are o mmutative and associative

processed using the theory of evidence. After performing the combination, the decision as-

) sociated to the most “probable” elemefit has to be
A. Elements of theory of evidence. quantified. Among the existing rules of decision, the
Let @ = {w1,...,wn} be the set ofN possible final most commonly used is the maximum of the pignistic
classes for an incoherent pixel, called the frame of disprobability. This decision rule, introduced by Smets [15]
cernment. In our studyy = 3 and{2 corresponds to the uses the pignistic transformation that allows to distebut
three final classe$wy,w.,ws} respectively representing the mass associated to a subsefofver each one of its
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elements: C. Mass function design
m(A) One of the main drawbacks of the theory of evidence
BetAw.m) = — Vw € Q (8) s the design of mass functions: the quality of the fusion
Al . ,
weACH process depends on the quality of the mass function.

Among all existing modelisations, two models have been

compared : 1) the one proposed by¥NEUX [16] has

been retained in our study on account of its integration of
both the distance to the neighboors and different criteria

w" = Arg {gleag [BetAw, m)]} : (9)  of neighborhoodéd.g, mean luminance, emergence,...) in

its definition and 2) the one introduced byARIOU[17]
based on a likelihood function.

B. Are the images adapted for the use of the theory of 1) DENEUX's model: The massmn({w;}) is defined

evidence ? as a decreasing function of the distantédetween the

fpixel to classify and the barycenter of the class:

|A| is the cardinal ofA. The decision is executed from
the elements of) the highest value of which is:

In this subsection, one justifies that the theory o
evidence is well adapted to segment microscopic color { m(wr) = aexp (—yd?) (10)
images. The following remarks can be formulated: m(Q2) =1 —m(w)

« The images are obtained using the same segmentahere0 < « < 1 is a constant computed from the
tion technique based on a pixel classification procesebtaineda posterioriprobabilities provided by the SVMs
through different colorimetric transformation. The output for the classy; within the trial color spaces. In
same regions are observed many times and thus theinat caseq = pi(w;). v depends on the clasg and is
associated information are redundant, computed by minimization of an error criterion using the

« Each segmented image yield us to highlight relevanEM algorithm.
regions that can differ from one image to another 2) APPRIOUS model: This model is based on like-
one due to its color representation, lihood functionsL(w;|X) satisfying three axioms [18]:

« The images are obtained from an acquisition chairl) the consistency with the Bayesian approach, 2) the
composed by an Olympus BX 50 microscope with aseparability of the evaluation of the hypothedés and
Mrzhuser motorized autofocus scanning and a 3CCI3) the consistency with the probabilistic association of
JVC KY-F75 camera connected to a computer bysourcesS;.

IEEE 1394. Before attempting to acquire images, The a priori probability functiory (X|w;) is supposed
the system needs to be allowed sufficient time tato be known. The conditional likelihood associated to a
warm up. To determine this thermal equilibrium, a patternz could be defined by (w;|X) = f(X|w;). In

flat field image of a slide has been acquired eventhis article, each class is assumed to be modeled by a
5 minutes during three hours. By computing theGaussian distribution. In that way, the conditional dgnsit
difference image between two successive flat fieldunction is

images and taking the mean gray value of the whole 1 12— )Tz_l(w* )
difference image, we can plot the time course of J(Xlwr) = 2m)P/2[y |_1/2'e " ! a
color values after the system has been switched ! (11)

on. The data indicates that the thermal StabinzatiOﬂNhereM represents the mean vector @Il the inverse

of the system has been located after 90 minutegovariance matrix associated to the hypothesgis

(only 0.1 mean gray level of difference). The 90 According to [18], one model is the most consis-
min warming-up period was therefore used in ourtent with the Generalized Bayes Theorem introduced by
experiments. The lighting level of the microscope SweTs. Each information sources; is associated to N
can be modified by the user, but we have fixed itelementary mass function defined by :

to a constant electric tension which correspond to
the D65 illuminant. Once the lighting level has been i
fixed, the user can adjust the microscope condenser muj(Wn) = anj(1 = Ry L(wn|z;)) (12)
aperture which levels the amount of light passing my; () =1 —m(wy)

through the optical lens. A fixed value being more whereR; is a normalization factor defined by
suitable for reproductibility, the aperture has been .

fixed to 0.25. Therefore, acquiring an image is al- R; €0, (SEPIG[I{I??‘N}{L(%W)) i

ways performed under constant optical conditions ) o o ) _
ensuring reproducibility of the further segmentation@nd«; is a reliability factor depending on he hypothesis
results. Due to this acquisition step, the obtainegw: @nd on the source;. If the confidence during the

images are noisy,e., imprecise and uncertain. training phase is highy; = 1. Otherwisea; = 0.9 [19].

. A massm is finally obtained from the orthogonal sum
Those several constatations let us assume that the frar??the bbasmn, j:

of the theory of evidence can help us in the refinment o
the microscopic color images segmentation process. m(.) = d; & my;(.) (13)

my;(wp) =0
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The p likelihood functionsL(w;|z,) are estimated by beak and the rest of the body, and so on.). This measure
means of the EM algorithm while preserving a sames based on the computed errB¥s) on each pixel as:

frame of discernment for each information source.
cardV;\ R; card R;\V;
3) design of the mass functioffor both the models,  E(s) = cardV;\R:) and E'(s) = cardRi\V;)
N i cardV;) card R;)
the five initial mass function§n)ie(1,...,5) are generated (15)

after computing they candidate regions to the fusion The gisimilarity measure is provided by the local consis-

process and before the decision induced by the majorityenCy error as the segmentation quality measure:

vote. Thus, considering one segmentation map, one pixel 1

associated to one class frofw,, w.,ws} can be associ- LCE(I,V) = —— Zmin{E(s)’El(s)} (16)

ated to a subset of classes corresponding at mdst to h > w s

order to generate such a subset, the affectation constraigphere » and w respectively denotes the image height

has to be loosened. One way to perform that is to generatghd width. The lower the LCE value, the better the

an interval computed from the maximum value of the segmentation quality is.

posteriori probabilities to generate the subsetsuch as:  |n addition, a recognition rate (RR) is used to measure
A={weq/ the performance of the proposed scheme. This measure

allows to know how many pixels have been classified as
max(pk(wi)) — 0k < pr(wr) < max(pr(wi))X14)  the expert does.

where k € {1,...,5} and ¢; is an ad-hoc constant
depending on the perceptual sensitivity of each one oB. Results
the five trial color spaces. All the classes for which The proposed technique has been applied to an image
their probabilities are included within this new interval database containing 50 microscopic cell images. Figure
are considered as candidates for classification during thg presents a panel of four selected images from the
fusion process. database. One observes that the background of the images
The five mass functions yield to take into account theyaries from guite homogeneous (Fig. 4(d)) to highly
associated uncertainty to each one of the segmentatiagxtured (Fig.4(b)). The number of pixels corresponding
maps. Thus, close classes are brought together in the saniethe background, the cytoplasm and the nuclei is not
focal element, and the final decision is taken only aftebalanced across images: 89% of pixels are located to
combining the obtained results from other projections. cytoplasm, 7% concerns the cytoplasm and only 4% of
Concerning the BNEUX's model, two distance formu- pixels represents nuclei.
las have been investigated: 1) the Euclidean and 2) the Figure 5 shows the difference maps obtained between
Mahalanobis given byl = \/(x — ul)TZ[l(m — ). the classified map and the ground truth one (Fig. 5(b))
When using the Euclidean distance, the formulae giveffom the five trial color spaces (Fig. 5(c) to Fig. 5(g))
in 1994 by the Commission Internationale de I'Eclairageand the map of incoherent pixels (Fig. 5(h)) obtained
(CIE) within the RGB color space has been used. Evenafter the intersection of the segmentation maps through
if the computation of the distance between colors has t&olorimetric transformations and before processing the
be performed within a perceptual color space differenPixels labelled to as incoherent. For Fig. 5(c) to Fig. 5(g),
from the RGB coordinates system, the initial formulae the white pixels correspond to an incorrect classification
is defined for short distance, and has not been validatedhile the black ones correspond to a correct classification
for long distance. Nevertheless, this formulae has thavith respect to the ground truth. In Fig. 5(h), incoherent
avantage to be defined by the CIE and, in that waypixels are black ones.

guarantees the best perceptual color difference. One can observe from Figure 5(h) that major disagree-
ments are very close to cytoplasm and nuclei boundaries.

Furthermore, one can observe that concerning the pixels
) ) that have been misclassified (white pixels within Fig 5(c)
A. Segmentation Quality Measure to Fig. 5(q)), the error is the same in each case. In that
When a ground truth image is available, quality mea-case, the classification is incorrect but not incoherermsin
sures usually integrate at least a factor to take into adcounll the five classifiers have selected the same but wrong
the region size and another one to compute the recovelass.
rate between the regior# of the segmented imageand Table | presents 1) the mean (in percentage) of correctly
the regiond/; of the groundtruth imagg’. Among all the and incorrectly classified pixels and 2) the mean (in
proposed quality metrics, the one developed byRVIN percentage) of incoherent pixels for each one of the
[20] has been used because this metric is insensitive twial color spaces and all the images of the ground truth
the granularity variation levels induced by the manualdatabase. For example, one can observe that, farb*,
segmentation produced by different experts. Indeed, eveonly a limited percentage of pixels have been incoherently
if two human observers have the same perceptual orgalassified (about 3.38%). The segmentation quality gain
nization of an image, they may choose to segment it atan only be obtained from these pixels. Actually, even if
different levels (e.g., a bird can be segmented as onl$6.52% pixels have been correctly classified, 9.1% remain
one object or as a set of many sub-objects containing thecorrectly classified. This misclassification cannot be

V. EXPERIMENTAL RESULTS
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Fig. 4. Panel of four representative images of the used dstab

(c) Segmented map obtained frofd) Segmented map obtained frof@) Segmented map obtained from
the L*a*b* color space. the RGB color space. the HSL color space.

(f) Segmented map obtained from tlg) Segmented map obtained from (h) Map of incoherent pixels.
Y Cy C,. color space. the YUV color space.

Fig. 5. Location of the incoherent pixels after intersegtthe five segmentation maps. For Fig. 5(c) to Fig. 5(g), th&embixels correspond to

an incorrect classification while the black ones corresponal correct classification with respect to the ground triritzig. 5(h), incoherent pixels
are black ones.

© 2007 ACADEMY PUBLISHER



64 JOURNAL OF MULTIMEDIA, VOL. 2, NO. 3, JUNE 2007

corrected at this stage since all classifiers have selected Considering the three proposed combination schemes,
the same but wrong class. Th&’,C,. color space is the the one based on the HREuUX's model implementing
best color space in terms of possible correct classificatiothe Mahalanobis distance provides the best recognition
since theoritically one can reach a correct classificatiomate (92.45%). Comparing to the theoritically best score
rate equal to 91.2%. Nevertheless, the spatial distrihutioobtained from the “best color space” (91.2% 16€,C,.),

of incoherent pixels differs from a color space to anotheione shows that evidence theory is very promising to seg-
one. In that case, it's quite impossible to choose only oneénent microscopic color images very carefully. Actually,
color space. Performing a fusion process applied to théhe obtained recognition rates is greater that the results
incoherence maps from the five color spaces may be yieldbtained from only one color space (even if it is the
us to reach higher classification rates. “best”).

Since the quality gain essentially concerns the classi-

correct | Incorrect | Incoherent fication of pixels around cytoplasm and nuclei bound-
L*a*b* | 87.52£ 5097 | 9.1L 421 | 3.38% 0.96 : h . lity f | 4 th
RGB 7833+ 472 | 102+ 3.93 | 1147+ 0.75 aries, the segmentation quality for cytoplasm and thus
HSL 87.114+5.01 | 9.5+ 4.12 | 3.39+ 0.80 for nucleus too, increases, and consequently the global
YUV 86.78+ 5.87 | 10.3+ 4.25 | 2.92+ 0.84 i, : . .
In addition, using the distane&, the mean recognition
TABLE | rate as well as the mean segmentation quality increase

MEAN OF CORRECTLY INCORRECTLY AND INCOHERENTLY
CLASSIFIED PIXELS WITH RESPECT TO THE GROUND TRUTHS FOR
ALL IMAGES AND FOR EACH COLOR SPACES

according to the use of the distande. This is mainly
due to the fact that the distanek takes into account
the dispersion of the two compared spatio-colorimetric

clouds.
Mean of the RR] Mean of MQ VI. CONCLUSION
SVM 87.52% 5.97 0.43£ 0.03
822$3§ glg gg-igi ‘51-%‘ g-ggi 8-82 A tool for diagnosis assistance by automatic segmen-
Appriou 87.68+ 523 042+ 004 tation of microscopic ceIIuIar_lmages is propo_sed. The_
used segmentation scheme is based on a pixel classi-
TABLE Il

fication technique developped byaMNIK known to be
the SVMs. This choice is justified by two criteria: 1) a
high classification rate and 2) a fast pixel classification
process. The main idea of the method is to process the
pixels for which at least one disagreement of classification
is observed. This allows us to introduce uncertainty on
the initial SVM-based segmentation processes. In order to
construct different segmentation maps, the SVMs are ap-
gblied through five different colorimetric transformations
eThis allows us to take into account the characteristics of
each color space. From those five segmentation maps, an

MEAN OF 1) THE RECOGNITIONRATE (RR) AND 2) OF THE MARTIN
QUALITY (MQ) MEASURE FOR THESVM-BASED SEGMENTATION
SCHEME AND THE PROPOSED ONE BASED ON THRENEUX' S
MODEL INTEGRATING 1) THE EUCLIDEAN DISTANCE (d1) AND 2)
THE MAHALANOBIS ONE (d2), AND THE ONE BASED ON THE
APPRIOU S MODEL

Table Il shows the mean of the obtained correct cla
sification rates from the database from 1) SVMs, th
proposed combination method based on the Denceux o e = )
model using 2) the Euclidean distanaé ) and 3) the a poster|er|probeb|llty is cemputed which is considered
Mahalanobis distancels), and the combination scheme as a bel_|ef funct|_on associated to each elass. Then,. an
based on the APRIOUS model. SVMs have been trained Ntersection map is generated to detect pixels for which
on a training database where the 20 images are differefit Iea_st one disagreement of classification is observed.
from those contained within the test database. Fror’r@nly !ncoherent plxels are proceseed under'the theory
the obtained results, one can state that the combinatio(?'f ewdence constraint te determine their flnel class.
process used in the proposed segmentation scheme outhﬁpe”d'ng on the used distance measure, the final results
forms the SVM-based segmentation scheme. Actually, th&1OW that the proposed method outperforms the SVM-
incoherence is mainly due to a disagreement obtained fdt2S€d segmentation technique. Results shows that when
the classification of pixels located in cytoplasm or nuclei.USing a dlstance.t.hat 'takes 'nFO account the neigborhood,
That means that for images containing a great number (}Pe correct classification rate increases.
pixels labeled to as “background”, the classification rate i
initially high. In that case of images, the expected quality
gain will not be significant since only a few number of
pixels located around cytoplasm and nuclei boundariedl] C: Charrier, G. Lebrun, and O. Lezoray, “Fusion of SVVsbd

. . y microscopic color images through colorimetric transfaior®” in
will be labeled to as “incoherent” pixels. In other words, IEEE International Conference on Acoustics, Speech, agdaSi
only a few number of pixels will be processed applying Processing Toulouse, France, May 2006, vol. Il, pp. 1112-1115.
the proposed method. The quality gain depends on thd?l V. Meas-Yedid, E. Glory, E. morelon, Ch. Pinset, G. Stamand
number or processed pixels: the higher the number of J-C. Olivo-Marin, “Automatic color space selection for loigical

’ ) ) . image segmentation,” iPAPR 17th International Conference on
processed pixels, the higher the quality gain. Pattern RecognitionAug. 2004, vol. Ill, pp. 514-517.
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