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Abstract: The combination of classifiers has been proposed
as a method allowing to improve the quality of recognition sys-
tems as compared to a single classifier. This paper describes
a segmentation scheme based on a combination of pixel clas-
sifications. The aim of this paper is to show the influence of
the neighborhood information and of the number of classifiers
used in several combination processes. In the first part, we
detail the ground of our study for a microscopic application.
Then, we name the different steps of the new segmentation
scheme. In the third and fourth part, we detail the different
rules that can be used to combine classifiers and the classifica-
tions results obtained on colour microscopic images. Finally,
we draw a conclusion on the improvement of the quality of the
segmentation at the end of treatment.
Keywords: classifier combination, segmentation, pixel classi-
fication, colour, microscopy.

1 Introduction

Image analysis in the field of lung cancer is a diagnosis tool for
cytopathology. The quantitative analysis of colour and texture
of nuclei coming from microscopic colour images brings to
the pathologist valuable information for diagnosis assistance.
This analysis can only be performed from perfectly segmented
objects. The segmentation of the bronchial cells is a difficult
task because the mucus present in the background has the same
aspect as some cells (cytoplasm, nucleus) in the setting of the
international coloration of Papanicolaou. Our last works [1, 2]
showed that an unsupervised or supervised pixel classification
brings satisfactory results but that a combination of pixelclas-
sifications might improve our segmentation. Several studies
[3, 4, 5, 6, 7] shown that this technique has became more and
more used to improve the quality of recognition systems in
several applications and notably in medical systems [8]. The
difficulty to affirm the superiority of a classifier in relation
to another brings us to couple several classifiers simultane-
ously. It enables to use their complementarity and to increase
the quality of recognition of our segmentation system.To this

aim, we propose an automatic segmentation scheme based on
combination of pixel classifications. It is given in six steps:
a simplification step to reduce the noise, pixel classifications
to obtain three classes (background, cytoplasm and nucleus)
in all images, a combination of pixel classifications, a marker
extraction by using an operation of mathematical morphology
and a colour watershed growing to correctly segment the ob-
jects. The paper is organized as follows: in section 2, we de-
scribe the colour segmentation scheme. In section 3, we detail
the combination of pixel classifications step. In section 4,we
give experimental results on the combination of pixel classifi-
cations schemes with an evaluation method adapted to micro-
scopic images. Finally we draw a conclusion on the quality of
the segmentation.

2 The segmentation scheme

The segmentation scheme is given in six steps [1, 2]:

➊ Image simplification: the simplification step consists in
a pre-treatment phase with the aim of smoothing the initial
image to reduce the importance of noise. The produced
image is used to compute the gradient needed in the colour
watershed step. The growing quality depends greatly on the
gradient image. This smoothed image is also used as input to
the pixel classification step in order to reduce the classifier
sensitivity to the presence of noise (see in [9] for more details).

➋ Pixel classification: the classification step consists in
determining for each pixel of the image, a class among
background, cytoplasm or nucleus. To realize this classifi-
cation, we have used several unsupervised classifiers using
a Hierarchical Ascendant Classification (based on K-means
or Fisher) [1] and supervised classifiers (Bayes, kNN, SVM,
MLP) using a learning data base that was built from four
images segmented by an expert in cytopathology [2].



➌ Combination of pixel classifications: this step permits
to increase the recognition rate of objects. To this aim, we
use the complementarity which can exists between several
classifiers. We combine by different methods the pixel
classifications produced in the previous step. In this paper, we
give a detailed description of this step by presenting several
combination schemes.

➍ Marker extraction: with the image produced in the
previous step, a pixel subset is recognized as belonging to
the cytoplasm or the nucleus, this subset corresponds to true
markers. The marker extraction is based on mathematical
morphology operations which consists in a variable number
of erosions on the level of the boundaries according to the
marker type.

➎ Colour watershed: from the markers previously extracted
and the smoothed image, a watershed performs a growing
using image colour information. The obtained regions corre-
spond to the cytoplasms and nuclei [10].

➏ Evaluation: our evaluation method is based on an im-
proved classification rate and is adapted to our study. The pro-
posed method uses a reference manual segmentation provided
by an expert and provides a recognition quality index of the
cytoplasm (IdCytoplasm) and of the nucleus (IdNucleus)
[2].

3 Combination of pixel classifications

3.1 Definition of classifier

A classifier usually designates a recognition tool that provides
class memberships information for a vector received in input.
This tool can be described by a functione that with a feature
vectorx of the object to recognize, assign tox the classCi

amongk possible ones:

e : x ∈ Rn → K with K ∈ {C1, ..., Ck} (1)

Moreover, the answers provided by the classifier can be clas-
sified in three categories [5]:

• Class type:e(x) = Ci(i ∈ [[1, k]]), indicates that the
classifier assigned the classCi to x,

• Rank type:e(x) = [[rj
1
, ..., rj

k]] whererj
i is the assigned

rank to the classi by the classifier,

• Measure type:e(x) = [mj
1
, ...,mj

k] wheremj
i is the mea-

sure assigned to the classi by the classifier.

(a) Initial image.

(b) Manually segmented image.

(c) Classified image by SVM algorithm.

(d) incoherence zones between the different classifiers
(yellow).

Figure 1: Pixel classification results.
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3.2 Importance of the combination step

Since it is difficult to claim the superiority of classifiers one
to another, a combination of classifier decisions seems neces-
sary. The classifiers having not the same opinion of the class
to be allotted to the same pixel, we were brought to carry out a
combination of pixel classifications. The answer provided di-
rectly by the pixel classification is of class type. But this type
of output being the one that brings the less information, we
coupled it to a confidence index to perform the combination
of pixel classifications. Fig. 1(a) presents an initial image to
segment, Fig. 1(b) presents the ground truth segmentation and
Fig. 1(c) gives the pixel classification result obtained by the
SVM algorithm. Fig. 1(d) shows the superimposition of all
the pixel classifications from several classifiers. On this figure,
the background is presented in black, the cytoplasm in blue,
the nucleus in green, and incoherence zones in yellow. These
incoherence zones show the pixels where all the classifiers do
not provide identical opinions on the class to be allotted toa
same pixel.

3.3 Confidence index

A testing data base was built from four images containing ob-
jects with a wide variability and each image has been manu-
ally segmented (Fig. 1(b)) by an expert in cytopathology1.
We evaluate every classifier on this testing data base (the test-
ing data base is different of the learning data base). We obtain
for every classifier, like describes it the following relation, a
confidence indexindexi

j . This confidence index represents
the classification quality of the classifierj to the classi (with
i ∈ [[1, k]]). For a classifierj ∈ [[1, n]], we define:

indexj =





index0
j

...
indexk

j



 (2)

The confidence index is evaluated by a novel pixel classifica-
tion quality index adapted to microscopic images (see in [2]
for more details).

3.4 Combination schemes

A lot of different combination methods can be found in the
literature [7, 3, 6, 5]. In this section, we propose to compare
several of them to perform the combination of pixel classifica-
tions.

1The authors would like to thank Mr Michel Lecluse and the pathological
anatomy and cytology department of the Louis Pasteur HospitalCenter of
Cherbourg for providing the ground truth reference images.

3.4.1 Untrained combination

Classical combination schemes usually combine several
decisions coming from several classifiers, each classifier
providing class memberships. In the case of pixel classifi-
cation, this is directly applicable and one can combine the
different outputs of the classifiers one to another. However,
dealing with images, the spatial information involved in the
pixel connectivity is not taken into account while combining
several classifications for one pixel. It is therefore interesting
to use not only one single value to describe the output of a
classification method but several ones corresponding to all
the classifications obtained for pixels neighbors to the central
one considered. For a neighborhood of sizei, the size of the
feature vector associated to one classifier is of(8i + 1) (with
i = 0 one recovers the simplest case of only one classification
per pixel). The combination methods [7] that we use are
methods without training which can be described as follows:

If E the set ofn classifiers used, we haveE = {e1, ..., en}.
Every classifier associates a classCi to an input vectorx. We
can thus defineECi

(x) as the set of classifiers which all asso-
ciate to an input vectorx the classCi:

ECi
(x) = {ej ∈ E|ej(x) = Ci} (3)

We have clearly∪ {ECi
(x)} = E since a classifier takes

only one decision of class type. With everyECi
(x) set with

i ∈ [[1, k]], one can associate the set of confidence indexes for
every classifierej ∈ ECi

(x). Each index corresponds to the
confidence given to the classification carried out by theej clas-
sifier when it associates tox the classCi. Let ICi

(x) denotes
the set of these indexes:

ICi
(x) = {indexCi

j |ej ∈ ECi
(x)} (4)

The setICi
(x) corresponds to the respective confidence in-

dexes of the classifiers who classify the inputx as being of
classCi. From these sets, we can compute the membership
probability ofx to the classCi by the following relation.

P (Ci|x) = g(ICi
(x)) (5)

whereg is a combination rule among the followings: majority
vote (MV), minimum (MIN), maximum (MAX), sum (SUM),
average (AV), product (PDT).

We can then assign to the pixelp the classCk such as:

P (Ck|x) = argmax
l

P (Cl|x) (6)

This combination scheme therefore requires no training andis
unsupervised.
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3.4.2 Trained combination: BKS

A trained combination scheme that can be used to combine
several classifiers is theBehaviour Knowledge Space(BKS)
method. The BKS rule estimates posterior probabilities from
a training set by computing the frequency of each class cor-
responding to each combination of the classifiers decisions.
For ak class problem, whenej(x) denotes the class decision
provided by thejth classifier among then used, the vector of
all the classifiers decisions(e1(x), ..., en(x)) defines a point
in a k-dimensional discrete space which is called Behaviour
Knowledge Space (BKS). Each point of the BKS can be con-
sidered as indexing a cell. The cell, which is the intersection
of the classifiers’ decisions, is called the focal point. Foreach
cell, the value with the largest number of patterns is estimated
from a training set. The BKS combination scheme assigns
such a class to an input patternx. The BKS can be regarded
as a look-up table that maps the classifiers decision vector into
a class: it associates the final classification to each combina-
tion of classifier outputs. The method requires the construction
of a large look-up table which cross-references every possible
combination of the classifiers decisions. With respect to the
original formulation of this combination method, we weighted
the decision according to their confidence index.

3.4.3 Dempster-shafer combination

The computation of the intersected image from all initial seg-
mented ones is realized. A pixel is considered as well classi-
fied when the class is the same for all segmented images. A
confusion of classification may remains when a same pixel be-
longs to different classes. Those kind of incoherent pixelsare
labelled to as misclassified pixels. In such a case, a combina-
tion of results obtained is realized to reach the final segmenta-
tion. To perform this step, the theory of evidence is used.

Basic principles of the Evidence Theory Let Ω =
{ω1, . . . , ωN} be the set ofN possible classes for the input
vector~x, called theframe of discernment. Instead of narrowing
its measures toΩ (as the theory of probability does constrained
by its axiom of additivity), the theory of evidence extends on
the power setΩ, labeled as2Ω, the set of the2N subsets of
Ω. An initial mass functionm is then defined from2Ω to [0, 1]
and must satisfy:

∑

A⊆Ω

m(A) = 1 et m(∅) = 0 (7)

where∅ is the empty set.m(A) quantifies the belief attached
to the fact that the search class belongs to the subsetA ⊆ Ω
(and to none other subset ofA). SubsetsA such thatm(A) > 0
are referred to asfocal elements.

Two initial mass functionsm1 andm2 representing respec-
tively the information provided by two independent sources,
can be combined according to Dempster’s rule [11]:

m(A) =

∑

B∩C=A m1(B)m2(C)

1 − K
,
∀A ∈ 2Ω

A 6= ∅
(8)

K is known as theconflict factorand represents the dis-
crepancy between the two sources. It corresponds to the mass
accorded to the empty set after combination,i. e. K =
∑

B∩C=∅
m1(B)m2(C). The Dempster’s combination, also

known as orthogonal sum is written asm = m1 ⊕ m2. After
performing the combination, the decision on the elementsΩ
need to be taken to assign the class to~x. Among the existing
rules of decision, one commonly used is the maximum of the
“pignistic” probability. This decision rule [12] uses the pignis-
tic transformation that equally distributes the mass associated
to a subset ofΩ among each of its elements. The resulting
pignistic probability is then:

BetP(ω,m) =
∑

ω∈A⊆Ω

m(A)

|A|
,∀ω ∈ Ω (9)

where|A| is the cardinality ofA, and the decision on the best
class to be assigned to~x is:

ω∗ = Arg

{

max
ω∈Ω

[BetP(ω,m)]

}

. (10)

Application to unclassified incoherent pixels The informa-
tion provided by each classification process (i.e., from each
color planeRG, GB and RB) is represented by an initial
mass function(mi)i∈{RG,GB,RB} taking into account the un-
certainty associated to each color plane. Thus, classes that are
very close according to a particular plane are brought together
into a single focal element.Ai is the complement ofAi ⊆ Ω
with respect toΩ. From [13],

Ai = {ω ∈ Ω, (11)

ω = Classe(~x)|di(~x, ~x∗) ≤ εidi( ~x1, ~x
∗),∀~x} ,

for i ∈ {RG,GB,RB}. ~x∗ is the vector to be classified and
~x1 its nearest neighbor (according to a distancedi). εi is a con-
stant greater than 1, representing the chromatic specification of
the planei: the greater the sensitivity on this axis, the greater
the value ofεi. In particular, ifεi = 1 thenAi = {Class( ~x1)}
is a singleton corresponding to the nearest neighbor. The initial
mass function for the axisi is based onAi whose mass takes
into account the distribution of the elements within the setAi,
represented by the mean distance between two of its elements.
The initial mass functionmi is then defined as follows:

mi(Ai) = αie
−βid (12)

mi(Ai) = 1 − mi(Ai) − mi(Ω) (13)

mi(Ω) = 0.01 (14)
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whereαi is a constant andβi = 1/dmax. dmax being the max-
imum distance between~x∗ and the elements ofAi within the
RGB color space andd is the mean distance between elements
of Ai within this space. Thus, the greaterd (i.e., the more the
elements away the ones from one and all), the lower the mass
Ai.

In order to avoid a total conflict between two sources (two
planes), a constant mass is given to the frame of discernment.
The remaining mass is assigned toAi.

Let mRG, mGB andmRB be the three initial mass func-
tions. The resulting mass function from the combination of
the three functions is thenm = mRG ⊕ mGB ⊕ mRB where
⊕ is the orthogonal sum [11] defined by equation (8). Then,
the final class of~x∗ is selected fromm based on the maximum
of the pignistic probability (Eq. 9).

4 Experiments results

The images on which we work are microscopic cytology im-
ages of bronchial tumours acquired by a standardized plat-
form. We provided the results of pixel classifications com-
bination obtained on four cytological 24 bits colour imagesof
size752 × 574 pixels, each one containing hundreds of cells
and all segmented manually by an expert in cytopathology to
further assess the recognition quality.

In table 1, we present in order of merit the results of sin-
gle pixel classifications obtained with the best colour space to
further justify the importance of the combination step. The
segmentation of nuclei bringing more information to the ex-
perts, we privilege the recognition quality index of the nucleus
in relation to the cytoplasm. One can see that the best results
are obtained with SVM supervised classification.

Table 1: Pixel classifications results with the best colour space
before the combination step.

Classifier Space IdCytoplasm IdNucleus
SVM Y Ch1Ch2 77.4 % 74.2 %
Bayes Y Ch1Ch2 72.4 % 74.6 %

k-means Y Ch1Ch2 69.5 % 74.4 %
MLP Y CbCr 56.9 % 73 %

Fisher 1 RGB 50.8 % 72.3 %
kNN HSL 79.9 % 70 %

Fisher 0 I1I2I3 57.3 % 71.9 %
Fisher 2 HSL 59.9 % 69.8 %

Fig. 2(a) and 2(b) present the different untrained combi-
nation rules according to the number of combined classifiers.
The classifiers being ordered as candidates for combinationac-
cording to their confidence indexes. The majority vote (MV),
and sum (SUM) are the methods which gave the best results for

the whole cell (cytoplasm and nucleus). In the following, we
comment our combination results only with these two meth-
ods. For the nucleus recognition, the indexes slightly increase
with the growth of the number combined classifiers. For the
cytoplasm recognition, a maxima of the indexes is obtained
for 3 combined classifiers. We conclude that the best recogni-
tion of the whole cell is obtained with3 combined classifiers.
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(a) Recognition quality index of the nucleus.

50,0

55,0

60,0

65,0

70,0

75,0

80,0

2 3 4 5 6 7 8

Number of combined classifiers

R
e
c
o

g
n

it
io

n
 q

u
a
li
ty

 i
n

d
e
x
 (

%
)

MIN MAX

SUM PDT

AV MV

(b) Recognition quality index of the cytoplasm.

Figure 2: Influence of combination rules according to the num-
ber of merged classifiers.

Fig. 3(a) and 3(b) present the neighborhood influence in
the combination process according to the number of classifiers
with the SUM combination scheme. On can state that the nu-
cleus recognition is increased by using8 or 16 neighbors. The
cytoplasm recognition is increased or decreased with8 neigh-
bors according to the combination rule used. Beyond this, the
nucleus and cytoplasm recognition decreases. We can con-
clude that the best recognition of the whole cell is obtainedfor
8 neighbors with the3 best classifiers for the SUM untrained
combination rule.
For the BKS trained combination rule, the recognition de-
creases while the neighborhood increases. This can be ex-
plained since when the number of classifiers and/or the num-
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(a) Recognition quality index of the nucleus.
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(b) Recognition quality index of the cytoplasm.

Figure 3: Influence of neighborhood information.

ber of classes is large, this requires a huge training set to
have a good chance of populating each element of the look-
up table. Additionally the training set has to be a good rep-
resentation of unseen data otherwise, as in the experiments
of KUNCHEVA [14], BKS will perform well on training data
while performing poorly on the testing data. This is what was
stated again by our experiments. Good results are however ob-
tained while performing KBS on a single pixel with the three
best classifiers.
For the Dempster-Shafer combination rule, the classification
rates are higher than the single classifiers. This combination
rule does not use neither the confidence indexes of the sin-
gle classifiers nor the neighborhood information, however the
classification rates are very close to the others combination
rules. This seems really promising: taking into account the
previous criteria into the distance measure might further in-
crease the recognition rate. Moreover this combination rule
does not need any training set and is totally unsupervised.

Table 2 resumes the quality indexes of the pixel classifi-
cation with the used combination rules. The results are very
close but the untrained combination rule using the SUM seems

more powerful than the others (this was already experimen-
tally stated by KITTLER [7]. Table 3 presents the quality index
of the segmentation obtained at the end of treatment. The com-
bination step increases the segmentation quality of the whole
compared to a segmentation with a single pixel classification
taken alone (k-means or SVM algorithms). Fig. 4 presents
the final segmentation with colored boundaries of the objects
superimposed.

Table 2: Clasification combination rates.
IdCytoplasm IdNucleus

Untrained Comb. (SUM) 78.3 % 74.9 %
Untrained Comb. (VM) 78.1 % 74.8 %

Trained Comb. 78.5 % 74.8 %
Dempster-Shafer Comb. 76.3% 74.7%

Table 3: Final segmentation rate.
IdCytoplasm IdNucleus

k-means 72.8 % 76.2 %
SVM 73.2 % 75.8 %

Untrained Comb 76.5 % 76.4 %

Figure 4: Segmented image.

5 Conclusion

When using multiple classifiers, combination problems arise
since conflicting predictions between classifiers are possible
and one has to arbiter among them. Combining multiple pixel
classification (obtained from several inducers) can provide bet-
ter results than a single pixel classification taken alone. This
is why we propose a segmentation scheme of colour images
based on a combination of pixel classification. This paper
shows the improvement of the results by the use of a pixel
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classifications combination and of the neighborhood informa-
tion. The best combination for our application in microscopic
imagery consists in using a combination of the 3 best classi-
fiers with the information of neighborhood (8 neighbors) for
an untrained SUM combination rule. Future works will con-
cern the amelioration of the Dempster-Shafer combination rule
by the integration of the neighborhood information and qual-
ity indexes for each independant sources (the classifiers).Our
method is suitable for the segmentation of colour images in a
noisy environment and more particularly to the segmentation
of cellular objects (Fig. 4 and table 2). We have finally im-
proved the quality of our segmentation by the addition of this
combination of multiple pixel classifiers step.
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