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ABSTRACT

In this paper, we propose a new graph-based approach to

address the problem of cytological computer-aided diagnos-

tic. Such approach uses our previously introduced formal-

ism of PdEs-based morphology and geometric diffusion on

graphs. The approach is illustrated through two applica-

tions in cytopathology (involving Feulgen and Papanicolaou

colorations), with examples of nucleus extraction and classi-

fication.

Index Terms— PdEs, weighted graphs, morphology, cy-

tology, segmentation, classification

1. INTRODUCTION

Traditionally, cytopathologists take a diagnostic decision by

studying morphological and texture features of cellular com-

ponents (cytoplasm and nuclei), seen through a microscope.

This is a complex process as a cytological slide can contains

millions of cells on which abnormal cells (affected by a can-

cer) are often very rare or fortunately absent. During the

last decade, the advent of fast and efficient high-resolution

slide scanners along with the development of computer vi-

sion has opened the way to using digital pathology as a di-

agnosis tool. However, computer-aided diagnosis involves

many tasks, from the acquisition of the cytological slide to

the final classification of each cell. Indeed, the digital im-

age can be preprocessed for enhancement, and analyzed to

extract cellular objects. The extracted objects might also be

preprocessed, and analyzed to extract some features in order

to perform a classification. In this work, we use our recently

proposed framework of PdE-based morphology on graphs to

address the problem of cytological computer-aided diagnos-

tic through different sub-problems: image preprocessing, cell

extraction or cell classification. The rest of this paper is or-

ganized as follows. In Section 2, we provide definitions and

notations as well as a recall on PdEs based morphology on

graphs and detail our previous works on label propagation on

graphs. Section 3 presents two different graph-based method-

ologies for cytological slide segmentation and classification,
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with a particular focus on image preprocessing and nucleus

extraction steps. Section 4 concludes this paper.

2. PRELIMINARIES ON GRAPHS AND NOTATIONS

As the core structure of our approach, in this Section we pro-

vide notations and basics on weighted graphs. We recall our

formulations of differences, morphological differences and

gradients on weighted graphs [1, 2].

Notations: We assume that any discrete domain can be

modeled by a a weighted graph. Let G = (V,E,w) be a

weighted graph composed of two finite sets: V = {u1, ..., un}
of n vertices and E ⊂ V × V a set of weighted edges. The

weight function w : V × V → [0, 1] represents a similarity

measure between two vertices of G. According to w, the

set of edges is defined as : E = {(u, v) | w(u, v) �= 0}.

We denote by N(u) the neighborhood of a vertex u, i.e., the

subset of vertices that share an edge with u. In this paper,

graphs are assumed to be connected, undirected and with no

self loops. We denote by H(V ) and H(E) the Hilbert spaces

of functions that assigns a real value to each vertex, respec-

tively edge, of G. Let us consider A, a subset of V . The

outer and inner boundary sets of A are respectively denoted

∂+A and ∂−A. With ∂+A = {u ∈ Ac|∃v ∈ A, v ∼ u}
and ∂−A = {u ∈ A|∃v ∈ Ac, v ∼ u} where Ac is the

complement of A.

Operators on Weighted Graphs: Given a weighted graph

G = (V,E,w) and a function f ∈ H(V ), the weighted gra-
dient operator or weighted difference operator, noted Gw :
H(V ) → H(E) is defined on an edge (u, v) ∈ E by(Gwf

)
(u, v)

def.
=

√
w(u, v)

(
f(v)− f(u)

)
. (1)

Based on the weighted gradient operator definition, two

weighted directional gradient operators are defined. The

weighted directional external and internal gradient operators

are defined as G±
w : H(V ) → H(E), by(G±

w f
)
(u, v)

def.
=

√
w(u, v)

(
f(v)− f(u)

)±
(2)

with the following notations: (x)+ = max(x, 0) and (x)− =
−min(x, 0). The weighted gradient of a function f∈H(V )
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at vertex u is defined as the vector of all weighted gradients
with respect to the set of edges (u, v) ∈ E

(∇wf
)
(u)

def.
=

((Gwf
)
(u, v)

)
v∈V

. (3)

In the sequel, weighted gradient will refer to this gradient de-

fined on vertices. Similarly, the weighted morphological in-
ternal and external gradients at a vertex u are expressed as

(∇±
wf

)
(u) =

((G±
w f

)
(u, v)

)
v∈V

(4)

with the following Lp (p ∈ {1, 2}) and L∞ norms

‖(∇±
wf)(u)‖p =

[∑
v∼u

wp/2
uv |(Df(u))±|p

]1/p
,

‖(∇±
wf)(u)‖∞ = max

v∼u

(√
wuv|(Df(u))±|), (5)

PdE based Morphology Discrete erosion and dilation on

weighted graphs are respectively defined by

∂tf(u) = +‖(∇+
wf)(u)‖p and ∂tf(u) = −‖(∇−

wf)(u)‖p.
(6)

These equations (6) constitute a PdEs based framework [2]

that extends algebraic and continuous morphological opera-

tors to graphs. Such a framework has been involved in the

transcription of geometric PDES from continuous domains, to

graphs of arbitrary topology. Indeed, given, a set of vertices

A ⊂ V and using external and internal graph boundaries,

equation of dilation over A can be intuitively interpreted as a

growth process that adds vertices from ∂+A to A. By dual-

ity, erosion over A can be interpreted as a contraction process

that removes vertices from ∂−A to A.

Let Γ be a parametrized curve evolving on a domain Ω.

A very common way to describe the evolution of Γ, intro-

duced by Osher-Sethian [3], is to embed the curve in a func-

tion φ(x, t) such that the evolving curve Γt can be provided

by the 0-level set of φ. Once formulated as a level set prob-

lem, the curve evolution can be done by solving the following

equation
∂φ

∂t
= F|∇φ|. (7)

In a previous paper [4], we have proposed a transcription of

(7) to weighted graph, that can be expressed as a morpholog-

ical process with the following sum of dilation and erosion.

∂φ

∂t
(u) = (F)+‖(∇+

wφ)(u)‖+ (F)−‖(∇−
wφ)(u)‖ (8)

where F ∈ H(V ) controls the front propagation. Such a

formulation enables to recover geometric diffusion models

as mean curvature motion, active contours, or a graph based

transcription of the eikonal equation.

The eikonal equation is also a very popular equation in

computer graphics and computer vision which is involved in

many applications. Numerous methods have been proposed to

solve it on Cartesian grid and some particular non-Cartesian

domains (see [5] and references therein). Recently, we have

proposed two adaptations of the eikonal equation, first as a

time dependent version [2], then as a static version [5] which

is expressed as{
‖(∇−

wf
)
(u)‖p = P (u). ∀u ∈ V

f(u) = 0 ∀u ∈ V0.
(9)

Such adaptations are expressed using the PdEs based morpho-

logical erosion, and can be linked with the general geometric

PdE equation (8). In [5], we have proposed a label propaga-

tion algorithm based on the resolution of (9), that enables the

propagation of many labels on a graph. The propagation is

performed from a set of seeded vertices and until all vertices

of the graph are marked with a label. This algorithm enables

many applications on graphs, as geodesic distance computa-

tion on graphs, image segmentation and data clustering.

In the following Section, we present the interest of the

above morphological processes, applied to cytological slides

segmentation and clustering.

3. APPLICATIONS TO CYTOLOGY

In this Section, we focus on the three following problems:

preprocessing, cell extraction and classification, under our

unified formalism of PdEs-based morphology on graph. The

different steps will be illustrated through two methodologies.

The first that considers a Papanicolaou coloration along with

a RAG representation of images; The second considers a

Feulgen coloration along with natural grid-graph representa-

tion of images. In both cases, the preprocessing and cellular

objects extraction steps are presented.

Remark : In this paper, we consider images as grid-graphs

where each pixel is represented by a vertex, and edges are

added between adjacent pixels (in the sense of 4-adjacency).

The weigh function w is defined as a Gaussian kernel and

holds the similarity between the pixels color vectors. Ac-

quired cytological whole slides are split in thousands of

1024 × 1024 tiles images on which the different algorithms

are processed. All images presented in this paper are very

small details extracted from some of the processed tiled im-

ages and can obviously not represent the hugeness of digital

slides.

3.1. First method: Papanicolaou coloration

The Papanicolaou coloration is the most used in cytology, and

stains cytoplasms in light green and nuclei in dark blue. In

this paper, we propose a semi-supervised segmentation ap-

proach, based on two different graph representations of the

tiles.
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(a), (b)

(c)

Fig. 1. Papanicolaou nuclei extraction. (a) Initial image with

superimposed user seeds. (b) Extracted nuclei (green bound-

aries). (c) Detail of the partitioned version of the image (given

by the red boundaries). The extended RAG is illustrated for a

single vertex with local (green) and non-local (black) edges.

Preprocessing. While working on very large data (as it is

the case of cytological slides), many algorithms become in-

efficient due to the mass of data to process. A simple and

efficient way to avoid this problem is to work on a simplified

version of the data, that can be obtained by a partitioning algo-

rithm. In this paper, we propose to use an approach similar to

super pixels (which we can call super vertices as we work on

graphs). Such an approach uses a set of labeled seeds placed

on the image that are dilated using the graph-based propa-

gation algorithm (which preserves local boundaries) until the

entire image is labeled. In [5], we used a regular grid of seeds,

but to better catch the finest structures in the tiles images we

prefer here to use images extrema. Figure 1 presents an image

partition computed from the extrema, using our graph-based

label propagation approach. From the resulting partition, a

Region Adjacency Graph (RAG) can be easily built: distinct

regions are considered as vertices and connected regarding

their adjacencies. Finally, processing such a reduced version

of the image can consequently decrease algorithms computa-

tion time as the number of vertices is significantly reduced.

In Fig.1 the number of vertices from the first graph (the im-

age grid-graph) to second one (the RAG) has been reduced by

more than 95%.

Nuclei extraction. The proposed approach uses an ex-

tended version of the previously computed RAG, such that

each vertex is also connected to its two most similar vertices

in the whole graph. That way, two similar but not adjacent

objects can be connected in the graph. The segmentation is

performed on the extended RAG by the label propagation al-

gorithm introduced in [5], using a set of user seeds (one for

the background and one for the objects of interest). Figure 1

illustrates such a process. Such an approach has two main in-

terests. First, due to extra edges the labels can be propagated

to non-adjacent regions and reach distant or not connected ob-

jects (as the nuclei). Indeed, considering a labelized vertex,

the label propagation is driven along all its edges, including

non-local ones which connect distant objects. Second, the al-

gorithm being performed on a very low number of vertices,

the method can be used to process very large slides while

keeping a reasonable processing time.

3.2. Second method : Feulgen coloration

Feulgen coloration is more computer-vision-friendly, because

the slide can be seen as a set of two easily separable classes as

the background (in grey) and the nucleus (in pink). However,

the nuclei boundaries are often unsharp due to refractiveness

or mucus artifacts standing around the nucleus. In this paper,

we propose an unsupervised segmentation methodology for

nuclei extraction, which provides smooth boundaries, follow-

ing the process detailed in the sequel:

Preprocessing. Before the segmentation process, and

in order to better extract nuclei, the background homogeneity

is enhanced using a weighted morphological closing opera-

tion. For a given function f ∈ H(V ), one way to perform

a weighted closing operation is to implement it serially as

compositions of weighted dilation δ and erosion ε. We recall

that dilation and erosion equations (6) can be solved by steep-

est gradient descent, using the following iterative numerical

scheme: ∀u ∈ V , with fn(u) ≈ f(u, nΔt)

fn+1(u) = fn(u)±Δt‖(∇±
wf

n
)
(u)‖p (10)

Figure 2 illustrates a closing operation on a cropped part of

a cytological slide. This result clearly show that the closing

process preserves the important image components, such as

boundaries, while filtering and smoothing the homogeneous

parts of the images (background and interior of the nuclei).

Nuclei extraction. After the preprocessing step, the

background is homogeneous and can be automatically and

roughly detected as the biggest region of similar pixels (in

the sense of color variance). Such pixels become the seeds of

the background label which is propagated on the image grid-

graph until being stopped by nuclei boundaries. The stopping

criterion is held by the potential P of equation (9), as

P (u) = 1/
(
(μN − f(u))2 − (μB − f(u))2 +K(u)

)
(11)

where μN and μB are respectively the mean color of nuclei

and background, K is a curvature term that constraints the
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(a), (b)

(c), (d)

Fig. 2. Feulgen nuclei extraction. (a) Initial image. (b) Pre-

processed image (using a closing operation). (c) Initial labels

for segmentation. (d) Extracted nuclei. See text for details.

label evolution to produce smooth regions. This segmenta-

tion scheme has been evaluated on hundred images by a cy-

topathologist (per nuclei visual assessment) and 98% of the

nuclei are extracted and correctly delineated.

3.3. Data Clustering

The last step of both methods, which comes after nuclei seg-

mentation and features computation processes, is to deter-

mine if some of the extracted nuclei are abnormal. Such

problem can be seen as a data classification one, in two (or

more) classes: the data to classify is the set of nuclei (rep-

resented by their feature vectors) and typical classes are nor-
mal and abnormal. Finally, the classification problem can be

seen as a semi-supervised graph clustering problem, where

the data is represented as a k-nearest-neighbor graph (each

feature vector is represented by a vertex which is connected

to it’s k most similar vertices in the whole graph, according

to a similarity function). The clustering is performed using

our label-propagation algorithm on graphs, with a label per

class. Labels seeds are given by a reference data-set (where

the class of each nucleus is known) the entries of which are

added to the graph. Such a clustering method is presented as a

complement of the two nuclei extraction methodologies pre-

sented above, and illustrated on Fig. 3 with a 4-labels semi-

supervised graph clustering example. Using graph-based la-

bel propagation for clustering the set of nucleus has two main

advantages. First there is no classifier training, and modify-

ing the reference data-set does not imply to re-train a classi-

fier (as it is the case while using neural networks for exam-

Fig. 3. Illustration of nuclei classification using, semi-

supervised graph clustering and our label-propagation algo-

rithm. Left: seeds of each class. Right: classification result.

ple). Second graphs intrinsically provide a representation of

the organization of the different classes and the position of

each nucleus in each class. Such an information can be of

crucial importance for cytopathologists on ambiguous cells.

4. CONCLUSION

In this paper, we proposed a graph-based approach using our

formalism of PdEs-based morphology to address the problem

of cytological computer-aided diagnostic. The approach is

very general and has been illustrated through two methodolo-

gies, using different graph-based image representations (ac-

cording to the coloration), to perform nuclei extraction. In

both cases, the proposed methodologies has given very good

and promising results.
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