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(1) Introduction

The static eikonal equation is{
‖∇ f (x)‖ − P(x) = 0 x∈Ω ⊂ IRm

f (x) = φ(x) x∈Γ ⊂ Ω
, (1)

where φ (boundary condition) is a positive speed
function defined on Ω, f (x) is the traveling time or
distance from source Γ and P a potential function.
Solution of (1) represents the shortest distance from
x to the zero distance curve given by Γ (where
φ(x)=0) and describes the evolution of a front
driven by P.

Solutions and numerical schemes for static equa-
tion (1) have been proposed: iterative schemes [1],
fast sweeping methods [2] and fast marching meth-
ods [3, 4].
Another approach is to consider a time dependent
version:

∂ f (x, t)/∂t=−‖∇ f (x)‖+P(x) x∈Ω⊂IRm

f (x, t) = φ(x) x∈Γ⊂IRm

f (x, 0) = φ0(x) x∈Ω

. (2)

Contributions: We propose an adaption of (2)
over weighted graph of arbitrary structure based on
partial difference equations (PdEs).
The analogue of (2) on a weighted graph G =
(V, E, w) is

∂ f (u, t)/∂t = −‖∇−
w f (u)‖p + P(u) u∈V

f (u, t) = φ(u) u∈V0 ⊂ V
f (u, 0) = φ0(u) u∈V

,

(3)
V is the set of vertices of the graph, V0 is the initial set
of seed vertices, ∇−

w is a weighted internal morpho-
logical gradient on graph and ‖.‖p is the Lp-norm.

Advantages:
• Any domains (high dimensional and irregular)

that can be represented by a graph can be con-
sidered.

• No spatial discretization or triangulation step.

• For images: local and nonlocal configurations are
enabled in a same formulation.

• The formulation recovers well known schemes.



(2) Graphs and Weights

Weighted graph: A weighted graph G=(V, E, w)
is composed of a set V of vertices, a set E⊂V×V of
weighted edges and a weight function w:V×V→IR+.
An edge uv of E connects two adjacent vertices u and
v. The Hilbert space of functions defined on V is
noted H(V).

Neighborhood graphs: Any discrete domain
can be represented by a weighted graph where func-
tions of H(V) represent the data to process. We fo-
cus on two neighborhood graphs:
• the k nearest neighbors graphs (k-NNG).

• The τ-neighborhood graph (Gτ).
2D images ( f 0:V⊂Z2→IRm) can be represented by
Gτ graphs. For instance: the 4-adjacency grid graph
(G0) with the city block distance. Another use-
ful graph for image is the region adjacency graph
(RAG) where vertices correspond to image regions
and edges regions adjacency relationships.

Graphs weights: Function w reflects similari-
ties between data. One can use

g0(uv) = 1 (constant weight case) ,
g1(uv) = (ρ(F( f 0, u), F( f 0, v)) + ε)−1 or
g2(uv) = exp(−ρ(F( f 0, u), F( f 0, v))2/σ2)

σ>0 controls the similarity, ε is defined as ε>0, ε→0,
ρ is usually the Euclidean distance.

F( f 0, u)∈IRm is the features vector of u∈V where
f 0∈H(V) is an initial function.

Several choices of F can be used. The simplest
one is F( f 0, .) = f 0. For images, another choice is
provided by image patches: F( f 0, u) = Fτ( f 0, u) =
{ f 0(v) : v ∈ V with ρ(u, v) ≤ τ} (τ a threshold pa-
rameter). This feature vector has been proposed in
the context of texture synthesis [5], and further used
in the context of image and data processing [6–8].



(3) A Family of Gradients on Weighted Graphs

From [8] that defines for a function f∈H(V)

• the weighted difference operator on graphs for
uv∈E

∂v f (u) =
√

wuv( f (v)− f (u))

• the weighted gradient operator for u ∈ V

(∇w f )(u) = (∂v f (u))uv∈E

We define in [9]

• two new weighted directional difference deriva-
tives for an edge uv∈E with D f (u)= f (v)− f (u)

external: ∂+
v f (u) =

√
wuv max(0, D f (u))

internal: ∂−v f (u) =
√

wuv min(0, D f (u))

• two new weighted morphological gradients

external: (∇+
w f )(u) = (∂+

v f (u))uv∈E

internal: (∇−
w f )(u) = (∂−v f (u))uv∈E

The corresponding Lp (0<p<∞) and L∞ (p = ∞)
norms are, respectively

‖(∇±
w f )(u)‖p =

[
∑
v∼u

wp/2
uv |(0, D f (u))±|p

]1/p

‖(∇±
w f )(u)‖∞ = max

v∼u
(
√

wuv|(0, D f (u))±|)
(4)

where v ∼ u means that v is neighbor of u. These
gradients norms have the following properties

‖(∇w f )(u)‖p
p =‖(∇+

w f )(u)‖p
p + ‖(∇−

w f )(u)‖p
p

‖(∇w f )(u)‖∞ = max(‖(∇+
w f )(u)‖∞, ‖(∇−

w f )(u)‖∞)

Properties:
• These general definitions are defined on graphs

of arbitrary topology.

• They can be used to process any discrete regular
or irregular data sets that can be represented by
a weighted graph.

• Local and nonlocal settings are directly handled
in these definitions and both are expressed by the
graph topology in terms of neighborhood con-
nectivity [10].



(4) Numerical Schemes for Morphological Processes
Time dependent eikonal equation (2) is linked
with mathematical morphology processes and can
be viewed as morphological evolution equations.

Dilation and Erosion: The two fundamental
operations in mathematical morphology are dila-
tions δ:IRm→IRm and erosions ε:IRm→IRm. Classi-
cally, these operations are performed by consider-
ing lattices and their implementations are algebraic
(discrete).

Continuous morphology [11] defines flat dilation
and erosion of a function f :IRm→IR with the follow-
ing partial differential equations (PDEs):

∂tδ( f )=∂t f =+‖∇ f ‖p and ∂tε( f )=∂t f =−‖∇ f ‖p

Analogues on Weighted Graphs: In [9] we
have proposed analogues over graphs of the contin-
uous morphological equations by using morpholog-
ical gradients and their numerical schemes (4). For a

graph G=(V, E, w), a function f∈H(V)

∂tδ( f (u))=∂t f (u)=+‖(∇+
w f )(u)‖p

∂tε( f (u))=∂t f (u)=−‖(∇−
w f )(u)‖p

(5)

These equations constitute a morphological frame-
work [9] based on PdEs that extends algebraic and
continuous morphological operators for images and
high dimensional data processing.

Relations with Algebraic Formulations:
For the particular case where w = g0 = 1 and with
the L∞-norm, our definitions recover the definitions
of algebraic:

• classical internal and external differences and
gradients definitions.

• morphological gradient operator
‖(∇+

w f )(u)‖∞ + ‖(∇−
w f )(u)‖∞.

• morphological Laplace operator
‖(∇+

w f )(u)‖∞ − ‖(∇−
w f )(u)‖∞.

• dilation and erosion on graphs.



(5) Eikonal Equation over Weighted Graphs
System (2) can be viewed as an erosion process

regarding the minus sign and a constant potential
function P. The adaption of the eikonal equation on
graphs can be directly obtained with the erosion pro-
cess defined in (5) and by replacing operator ∇ f by
the internal gradient ∇−

w f . The analogue of (2) over
graphs (2) (parameterized by p and w) is

∂ f (u, t)/∂t=−‖(∇−
w f )(u)‖p+P(u) u∈V

f (u, t)=φ(u) u∈V0⊂V
f (u, 0)=φ0(u) u∈V

(6)
where V0 corresponds to the initial set of seed ver-
tices.

Numerical Schemes and Algorithms:
With our definitions of morphological gradients,
we can directly obtain the numerical schemes to
solve (6) without any spatial discretization thanks to
the discrete form of our operators on graphs. With
f n(u)≈ f (u, n∆t), we have

f n+1(u)− f n(u)
∆t

=− ‖(∇−
w f n)(u)‖p + P(u). (7)

With the corresponding Lp (0<p<∞) and L∞ (p =
∞) norms, we have

f n+1(u)− f n(u)
∆t

=−
[
∑
v∼u

wp/2
uv |min(0, D f n(u))|p

] 1
p +P(u) (8)

f n+1(u)− f n(u)
∆t

=−max
v∼u

(
√

wuv|min(0, D f n(u))|)+P(u) (9)

These numerical schemes work on any graph of ar-
bitrary topology. This implies that our formulation
constitutes a simple and unified method to solve the
eikonal equation for any data defined on regular or
irregular domains that can be modeled by a graph
in any dimensions.

Relations with other Schemes: With spe-
cific parameters and graphs, the proposed formu-
lation recovers the Osher-Sethian discretization
scheme for a m-dimensional grid (with (8) when
p = 2) and a Dijkstra like algorithm (with (9) when
p = ∞) for any graphs methods.



(6a) Experiments — Distance Computation
Images

Original

p = 2 p = 1 p = ∞

Adaptive Framework for Generalized
Weighted Distance Computation with dif-
ferent p values (distance maps with iso-
levels superimposed).
Potential P = 1 and graph configurations
are:

• first row (local): G0, w=g0, F= f 0

• second row (nonlocal): G2, w=g2,
F=F5( f 0, .)



(6b) Experiments — Distance Computation
Delaunay Graphs and Meshes

Original graph Left to right: front evolution
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(6c) Experiments — Distance Computation
Unorganized High Dimensional Data: Data Ranking (1)

Original data sets Initial Seed Distance Map

Graphs configurations (|V| =
100):

• first row: 20-NNG, w = g1,
f 0 : V→IR16×16

• second row: 3-NNG, w =
g1, f 0 : V→IR29×29



(6c) Experiments — Distance Computation
Unorganized High Dimensional Data: Data Ranking (2)

Ordered Ranking Results 10 Closest (at top) and 10 Farthest (at bottom) Results



(6d) Experiments — Nonlocal Segmentation: Images
Original+seeds Potential P Local Nonlocal+patches

Image segmentation with class
membership computation. Po-
tential P is original image gra-
dient.
Graphs configurations:
local case: G0, w = g0, F = f 0,
nonlocal case:

• First and second rows: G3,
w = g2, F = F2( f 0, .).

• Third: G0 ∪ 4-NNG, w = g1,
F = F3( f 0, .).



(6e) Experiments — Nonlocal Segmentation
Region Based Graphs (1)

Original Image Distance Map Local segmentation

Image Partition Distance Map Nonlocal segmentation

Segmentation by distance map
thresholding.
Advantages of regions based
graph:

• Nonlocal object segmentation.

• Minimal number of seeds.

• Fast computation: original im-
age, |V| = 65 536 pixels; im-
age partition, |V| = 1 324 re-
gions 98% of reduction in terms
of vertices.

Graph configurations:

• local case: RAG, w = g2

• nonlocal case: RAG ∪ 5 - NNG,
w = g2



(6e) Experiments — Nonlocal Segmentation
Region Based Graphs (2)

Original Image Image Partition Segmentation + initial seeds

Graphs configuration: RAG ∪ 4-NNG, w = g2.



(6f) Experiments — Nonlocal Segmentation: Unorganized
High Dimensional Data Clustering and Classification

Original set

Original set

Seeds and Classification Results

Seeds and Classification Results

Graphs configuration: first row 20-NNG, second row: 5-NNG, for both w = g1 and f 0 : V → IR16

Classification rates: 93.1% and 100%
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