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Abstract

The extension of lattice based operators to multivariate
images is a challenging theme in mathematical morphol-
ogy. We propose to consider manifold learning as the basis
for the construction of a complete lattice by learning graph
neighborhood topological order. With these propositions,
we dispose of a general formulation of morphological oper-
ators on graphs that enables us to process by morphological
means any kind of data modeled by a graph.

1. Introduction

Mathematical Morphology is a nonlinear approach to
image processing which relies on a fundamental structure,
the complete lattice L [10]. A complete lattice L is a non-
empty set equipped with an ordering relation, such that ev-
ery non-empty subset K of L has a lower bound ∧K and
an upper bound ∨K. In this context, images are modeled
by functions mapping their domain space Ω, into a com-
plete lattice L. With the acceptance of complete lattice the-
ory, it is possible to define morphological operators for any
type of image data once a proper ordering is established [2].
Within this model, morphological operators are represented
as mappings between complete lattices in combination with
matching patterns called structuring elements that are sub-
sets of Ω. In particular, the two fundamental operators in
Mathematical Morphology, dilation and erosion, form the
basis of many other morphological processes [13] such as
opening (γ = δε), closing (ϕ = εδ), etc. Erosion ε and dila-
tion δ of a function f ∈ L for an element x ∈ Ω are defined
by:

ε(f, x|B) = {f(y) : f(y) = ∧f(z), z ∈ B(x)}
δ(f, x|B) = {f(y) : f(y) = ∨f(z), z ∈ B(x)} (1)

∗This work was supported under a research grant of the ANR Founda-
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where B denotes a structuring element that contains x and
its neighbors in Ω. If Mathematical Morphology is well de-
fined for binary and gray scale images, there exist no gen-
eral extension which permits to perform basic operations on
multivariate data since there is no natural ordering on vec-
tors. Several ordering have been reported in literature to
consider that problem but they are reduced to considering
one specific type of images (color [1] or tensor [5] images).

In the sequel, we consider the general case of multivari-
ate images. A multivariate image can be represented by the
mapping Ω ⊂ Zl → Rp where l is the image dimension and
p the number of channels. One way to define an ordering re-
lation between vectors is to use a transform [7] h from Rp
into Rq , with q � p, followed by the conditional ordering
on each dimension of Rq . With h : Rp → Rq , and x →
h(x) then ∀(xi, xj) ∈ Rp × Rp, xi ≤ xj ⇔ h(xi) ≤ h(xj).
When h is bijective, this corresponds to define a space fill-
ing curve that goes through each point of the Rp space just
once and thus induces a total ordering. Therefore, there is
an equivalence: (total ordering on Rp)⇔(bijective applica-
tion h : Rp → Rq). To be able to perform morphological
operations on multivariate images, we need to define such
a transform h which is nothing more than a dimensionality
reduction transform. There exists a lot of different methods
to achieve dimensionality reduction that have enjoyed re-
newed interest over the past years [12]. For instance, once
a neighborhood graph is constructed from a given set, man-
ifold learning consists in mapping its elements into a lower
dimensional space while preserving local properties of the
adjacency graph.

In this paper, we propose to consider manifold learning
as the basis for the construction of a complete lattice by
learning graph neighborhood topological order. Since we
consider graph-based methods, we redefine basic morpho-
logical operators on graphs of the arbitrary topologies. With
these propositions, we dispose of a general formulation that
enables us to process by morphological means any kind of
data modeled by a graph.

The remainder of this paper is organized as follows. Sec-



tion 2 recalls basic graph notions, defines morphological
operators on graphs and explains how we construct a com-
plete lattice by learning graph neighborhood topological or-
der with Laplacian Eigenmaps. In Section 3, we report sev-
eral experiments for the morphological processing of im-
ages, region maps, image features data sets and image man-
ifolds. Last Section concludes.

2. Learning graph neighborhood topological
order

2.1. Preliminaries on graphs

We provide some basic definitions on graph theory [6].
A graph G is a couple G = (V,E) where V is a finite set
of vertices and E is a set of edges included in a subset of
V × V . Two vertices u and v in a graph are adjacent if the
edge (u, v) exists in E. u ∼ v denotes the set of vertices
u connected to the vertex v via the edges (u, v) ∈ E. Let
G = (V,E) and G′ = (V ′, E′) be two graphs. G′ will be
called a sub-graph of G if V ′ ⊆ V and E′ ⊆ E. A path
is a set of vertices (v1, v2, · · · , vl) such as there is an edge
for each two successive vertices of the path: ∀i ∈ [1, l[, the
edge (vi, vi+1) ∈ E. A graph is connected when for every
pair of vertices u and v there is a path in which v1 = u and
vl = v. In the rest of this paper, we consider only simple
graphs for which maximum one edge can link two vertices.
These simple graphs are always assumed to be connected
and undirected [6]. A graph, as defined above, is said to be
weighted if it is associated with a weight function k : E →
R+ satisfying k(u, v) > 0 if (u, v) ∈ E, k(u, v) = 0 if
(u, v) /∈ E. We can now define the space of functions on
graphs. Let H(V ) denote the Hilbert space of real-valued
functions on vertices, in which each f : V → Rp assigns a
vector f(v) to each vertex v. In Mathematical Morphology,
H(V ) has to be a complete lattice, this notion corresponds
to a topological order of vertices in terms of graph theory.

2.2. Mathematical Morphology on graphs

Given an arbitrary graph G = (V,E) and a vertex v,
the neighborhood set N (G, v) of vertices of a vertex v is
defined as:

N (G, v) = {u ∈ V : (u, v) ∈ E} ∪ {v} (2)

Then, we can obtain the set A(G, v) of edges connecting
any vertices in N (G, v) as:

A(G, v) = {(u,w) ∈ E : u ∈ N (G, v), w ∈ N (G, v)}
(3)

A structuring element S(G, v) at a given vertex v of a graph
G is a sub-graph of G defined as:

S(G, v) = (N (G, v),A(G, v)) (4)

With these definitions, we can define the erosion ε :
H(V ) → H(V ) of a function f ∈ H(V ) on a graph G
at a vertex v by:

ε(G, f, v) = {f(u) : f(u) = ∧f(w), w ∈ N (G, v)} (5)

and similarly for the dilation, we have:

δ(G, f, v) = {f(u) : f(u) = ∨f(w), w ∈ N (G, v)} (6)

If we compare these last definitions to the usual definitions
(see Equation (1)), the structuring element is directly ex-
pressed by the graph topology. For the case of images, these
definitions are equivalent. Indeed, for images, one considers
grid graphs (one vertex per pixel) and vertices are then con-
nected according to the chosen structuring element. How-
ever, our formulation is more general since it can be applied
on graphs of the arbitrary topologies. Similar definitions for
binary graphs can be found in [8].
With the previous definitions, graph topology never changes
but only vectors f(v) associated to vertices. However, since
erosion and dilation produce flat zones when applied on im-
ages, this comes to merge nodes when applied on graphs.
Therefore, we can also define contracting erosion and dila-
tion. First, we define the erosion of a graph G = (V,E) at
vertex v in terms of vertex preservation:

εV(G, f, v) = {u : f(u) = ∧f(w), w ∈ N (G, v)} (7)

Then, one can define the vertex erosion εV(G) : V → V of
a graph G = (V,E) as:

εV(G) = V ∩ {εV(G, f, v),∀v ∈ V } (8)

Similarly, we can define the edge erosion εE(G) : E → E
of a graph G = (V,E) as:

εE(G) = {(u, v) ∈ E, u ∈ εV(G), v ∈ εV(G)} (9)

Finally, we can define the contracting erosion εc(G) :
(V,E) → (V,E) of a graph G = (V,E) as an operation
that produces a new graph by: εc(G) = (εV(G), εE(G)).
This new graph corresponds to a sub-graph of G. Similar
definitions can be obtained for contracting dilation. What-
ever the formulation of erosion and dilation (contracting or
not), one always assumes that H(V ) is a complete lattice.
As previously mentioned, this is problematic when vectors
are associated to vertices (i.e. p > 1).

2.3. Laplacian Eigenmaps

To ensure that H(V ) can be considered as a complete
lattice, one has to define a total ordering relation for func-
tions f ∈ H(V ). This corresponds to define a topologi-
cal order on the graph. We propose to construct the order-
ing relation by defining a dimensionality reduction operator



h : Rp → Rq . The complete lattice is then defined by
comparing h(f(v)) with the conditional ordering relation.
Graph-based methods have recently emerged as a power-
ful tool for nonlinear dimensionality reduction and mani-
fold learning [12]. These methods are particularly suited
for analyzing high dimensional data that has been sampled
from a low dimensional sub-manifold. Among the exist-
ing methods, we choose to use Laplacian Eigenmaps [4].
Let {x1, x2, · · · , xn} ∈ Rp be n sample vectors. Given a
neighborhood graph G associated to these vectors, one con-
siders its adjacency matrix W where weights Wij are given

by a Gaussian kernel Wij = k(xi, xj) = e
(
− ||xi−xj ||2

σ2

)
.

Let D denote the diagonal matrix with elements Dii =∑
jWij and ∆ denote the un-normalized Laplacian de-

fined by ∆ = D −W . Laplacian Eigenmaps dimensional-
ity reduction consists in searching for a new representation
{y1, y2, · · · , yn} with yi ∈ Rn, obtained by minimizing:

1
2

∑
ij

∥∥yi − yj
∥∥

2
Wij = Tr(YT∆Y)

with Y = [y1, y2, · · · , yn].

This cost function encourages nearby sample vectors to be
mapped to nearby outputs. This is achieved by finding the
eigenvectors y1, y2, · · · , yn of matrix ∆. Dimensionality
reduction is obtained by considering the q lowest eigen-
vectors (the first eigenvector being discarded) with q � p.
Therefore, we can define a dimensionality reduction opera-
tor h : xi → (y2(i), · · · , yq(i)) where yk(i) is the ith coor-
dinate of eigenvector yk.

2.4. Morphological processing by local man-
ifold learning

To compare vector values and order them, we will only
use the second eigenvector provided by Laplacian Eigen-
maps since most of geometrical information appears in first
eigenvector (known as Fiedler vector). This is equivalent
to define the following projection: h : Rp → R which ob-
viously forms a complete lattice for H(V ). Dimensional-
ity reduction by Laplacian Eigenmaps is an algorithm the
complexity of which is O(|V |3) where |.| denotes the car-
dinality of a set. If one wants to use Laplacian Eigen-
maps to perform dimensionality reduction directly on the
whole set of pixels of an image, processing time becomes
too computationally demanding for large images or large
data sets. Therefore, we propose to use Laplacian Eigen-
maps on sub-graphs of initial graphs: structuring elements.
Given a vertex v, dimensionality reduction is performed on
the graph S(G, v) which is used to construct the similar-
ity matrix W . This comes to learn a graph neighborhood
topological order on the sub-graph S(G, v) to construct the
complete lattice that is defined on H(N (G, v)). To sum-
marize, when one considers a morphological operation on a

graph at a given vertex v, one has to: 1) construct a similar-
ity matrix W from S(G, v), 2) compute the eigenvectors of
∆ = D−W , 3) define the complete lattice onH(N (G, v))
by the dimensionality reduction operator h : Rp → R.
Then, one can determine lower and upper bounds of the lat-
tice H(N (G, v)) by using the projection h. As compared
to computing Laplacian Eigenmaps on the whole graph, our
approach is O(|V |k3) where k = {∨|N (G, v)|,∀v ∈ V }
denotes the maximum number of vertices of a structuring el-
ement. This formulation is sufficiently general to apply it to
any type of data living on graphs. Moreover, by modifying
the kernel quantifying the similarity between feature vectors
of vertices, one obtains a family of morphological operators
parameterized by the weight function of the graph.

3. Experimental results

In this Section, we present how our proposed formalism
can be used to process images, region maps, image features
data sets and image manifolds. An important issue in the
Manifold Learning part of our proposal lies in what value
of σ to use in Gaussian kernel of the similarity matrix. This
value acts as a scaling parameter and can be fixed a priori.
However, to have a parameterless kernel, for a graph G =
(V,E), the width of Gaussian kernel is estimated by:

σ = max
v∈V,u∼v

||f(v)− f(u)||

where ||f(v) − f(u)|| denotes a given distance measure
between feature vectors. We always estimate σ for each
S(G, v).

First, we consider the case of morphological image pro-
cessing and particularly color images. A color image is
represented by a grid-graph (one vertex per pixel) and ver-
tices are connected according to the shape of the structur-
ing element. In the sequel, for color images, we consider
8-adjacency grid graphs that means using a square struc-
turing element of size 3 × 3. A color image associates
color vectors to vertices: f : V ⊂ Z2 → Rp. One has
p = 3 for feature vectors in the classical RGB, HSI color
spaces and p = 6 in CIECAM02 color space [9]. The
Euclidean distance is used to compare color feature vec-
tors. Figure 1 presents results of an erosion in three dif-
ferent color spaces on a retina image1. One strong advan-
tages towards our formulation is that it remains exactly the
same whatever the representation associated to a given color
pixel. Therefore, this is no more problematic to apply mor-
phological operations to multivariate images. Since we are
able to perform the two basic morphological operations, we
can go one step further an compose them to obtain other
morphological operations. Figure 2 presents such results

1Retina image courtesy of Center for Bio-image In-
formatics, University of California, Santa Barbara
http://www.bioimage.ucsb.edu



Figure 1. Color image erosion in different
color spaces with, from top to bottom: orig-
inal image, erosions (ε) in RGB, HSI and
CIECAM02 color spaces.

on a color image (a hematology microscopic image in Fig-
ure 2(a)). The local maxima (Figure 2(b)) of this color im-
age are extracted. They are defined as the set of vertices
such that δ(G, f, v) = f(v). The morphological gradient
(Figure 2(c)) of the color image is computed. It is defined
as ∇(G, f, v) = ||δ(G, f, v) − ε(G, f, v)||. A watershed
of the morphological gradient with, as markers, the local
maxima is then obtained (Figure 2(d) shows the final region
map). Since over-segmentation is obtained, a classification
driven watershed can be used alternatively. A closing fol-
lowed by an opening is applied to the color image to per-
form strong simplification (Figure 2(e)). A k-means clus-
tering with k = 3 classes is performed on the simplified
image (Figure 2(f)). The final segmentation (Figure 2(g))
is obtained by a watershed of morphological gradient of the
simplified image with, as markers, the connected regions
of the clustering. Both these segmentations examples show
that the classic morphological approach to segmentation is
fully operational within our formalism.

Second, we consider the morphological processing of
Region Adjacency Graphs (RAG). From a cytological mi-
croscopic image (Figure 3(a)), a partition is constructed
(Figure 3(b)) by labeling connected components obtained
from a k-means clustering with k = 4. To the obtained
partition, a RAG can be associated where each vertex repre-
sents a region and edges model adjacency relations between
regions. To perform morphological operations on such a
graph, one needs to define the feature vectors associated to

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Color image segmentation with
morphological operators. See text for details.

vertices and the distance used to compare these features. We
have used here a Mahalanobis distance and f : V → R3×3

that represents the variance-covariance matrix associated to
each region. Several morphological contracting operations
are then applied successively: one erosion and two dilations
(Figures 3(c)-3(e)). Since these operations are contracting
ones, the number of vertices is reduced at each operation.
Figure 3(f) presents the original image with boundaries of
Figure 3(e) superimposed. Such processing on a RAG is a
simple alternative to region merging.

(a) Original Image f . (b) Labeled k-means
partition.

(c) εc.

(d) δc(εc). (e) δc(δc(εc)). (f) Region boundaries.

Figure 3. Morphological contracting operations
on a region adjacency graph.

Third, we consider the morphological processing of im-
age features data set (the Iris data set [3]). Iris data set
contains 3 classes of samples in 4-dimensions (i.e. f :
V → R4) with 50 samples in each class. The graph used to
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(a) Original Iris data set.
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(b) Opening γ = δ(ε).
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(c) Contracting opening γc = δc(εc).

Figure 4. Morphological processing of image features data set (the Iris data set).

represent data corresponds to a k-nearest neighbors graph
(k = 10). The Euclidean distance is used to compare fea-
ture vectors. Figure 4 presents the result of an opening γ
(Figure 4(b)) and a contracting opening γc (Figure 4(c))
applied to the original data set (Figure 4(a)). The opening
has enabled to simplify the data set while keeping the same
number of samples. The contracting opening has enabled
to retain only few representative samples from the original
data set (a third). Applying a k-means (k = 3) to both
these data sets gives 91.33% and 100.00% of classification
rates for opening and contracting opening whereas this rate
is 88.7% on the original data set. This shows the benefits
of our proposal which extends morphological processing to
graphs of the arbitrary topologies that can be used to model
any data set. This opens new outlooks for data mining by
morphological means.

Finally, we consider the morphological processing of im-
age manifolds that represent high dimensional real-world
data. The United States Postal Service (USPS) handwritten
digits data set is a database that contains grayscale hand-
written digit images scanned from digit 0 to 9. The images
are of size 16×16 pixels. To model such an image manifold,
a k-nearest neighbor graph is constructed (k = 10) where to
each vertex is associated an image (i.e. f : V → R16×16).
A simple Euclidean distance is used to compare feature vec-
tors. For visualization purposes, 50 samples were randomly
selected for digit 0 (Figure 5(a)). A database of cytological
cellular images is also considered. This database contains
color images of cells of different sizes that belong to 18 dif-
ferent classes. To each cell is associated a region map that
delineates its nuclear boundary. For visualization purposes,
we only consider the class of dystrophic mesothelials (38
cells in this category). One problem with such a database is
that the images of cells have different sizes. Therefore, we
consider the 64-colors quantized color histogram of each

(a) Original 0 digits. (b) A series of 2 Erosions.

(c) A series of 2 contracting
Erosions.

(d) Graph of Figure 5(a) digits with red
borders for digits of Figure 5(c).

Figure 5. Morphological processing of an im-
age manifold (USPS handwritten digits data
set).

cell (only inside the nucleus) and we have f : V → R64 that
associates a color histogram to each vertex. To model this
image manifold, a k-nearest neighbor graph is constructed
(k = 7). The Earth Mover Distance (EMD) [11] is used to
compare histogram feature vectors. For both these image
manifolds, Morphological processing is applied: a series of
two erosions or a series of two contracting erosions (Fig-
ures 5(b)-5(c) and 6(b)-6(c)). We have the same behavior
than for the processing of image features data set. The series
of erosions simplify the image manifolds while maintaining
their size. Then, a same feature vector can be associated to
different vertices and simplification acts as a suppression of
outliers. When the series of erosions are contracting mor-
phological operations, the manifold size is lower and few
representative images have been retained. To better under-



(a) Original cells.

(b) A series of 2 Erosions.

(c) A series of 2 con-
tracting Erosions.

(d) Graph of Figure 6(a) cells with red
borders for cells of Figure 6(c).

Figure 6. Morphological processing of an im-
age manifold (cellular cytology data set).

stand the behavior of such a series of contracting erosions,
in Figures 5(d) and 6(d), the surviving images of Figures
5(c) and 6(c) are shown with red borders on a graphical rep-
resentation of the graph associated to Figures 5(a) and 6(a).
One can see that the surviving images tend to correspond to
the most representative elements of the manifold. This can
be interesting for manifold compression or for extracting
relevant items of data bases.

4 Conclusion

In this paper, we have considered the general case of
morphological processing of multivariate data on graphs of
the arbitrary topologies. Morphological operators relying
on a complete lattice, it is defined by learning graph neigh-
borhood topological order with Laplacian Eigenmaps. With

proper formulations of the basic morphological operators
on graphs, any kind of data modeled by a graph can be pro-
cessed by morphological means. The behavior of our pro-
posal has been presented for the morphological processing
of images, region maps, image features data sets and image
manifolds. Moreover, these experimental results open new
outlooks for the use of Mathematical Morphology that has
been reduced to images until now.
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