Graphs Regularization for Data Sets and Images: Filtering and Semi-Supervised Classification

Vinh Thong Ta, Olivier Lezoray, Abderrahim Elmoataz

Computer Science PhD Thesis Vision and Image Analysis Group University of Caen, Low-Normandy (France)

GBR Pascal Workshop 2007 Alicante (Spain), June 14th, 2007

1 Weighted Graph Based Regularization Framework

- Filtering
- Semi-supervised classification

What are the Main Ideas?

From...

- Image processing: filtering, denoising
- Data set processing: semi-supervised classification

What are the Main Ideas?

From...

- Image processing: filtering, denoising
- Data set processing: semi-supervised classification

Therefore...

- Why not to use image filtering methods on data sets?
- Why not to use semi-supervised classification methods on images?

From...

- Image processing: filtering, denoising
- Data set processing: semi-supervised classification

Therefore...

- Why not to use image filtering methods on data sets?
- Why not to use semi-supervised classification methods on images?
- How can we solve these two apparently dissimilar tasks within a same framework?

From...

- Image processing: filtering, denoising
- Data set processing: semi-supervised classification

Therefore...

- Why not to use image filtering methods on data sets?
- Why not to use semi-supervised classification methods on images?
- How can we solve these two apparently dissimilar tasks within a same framework?

How?

- Weighted graph structure
- Functional regularization based on diffusion processes

Some basis and notations on graphs...

What is a Weighted Graph?

 A finite set of vertices, nodes V

What is a Weighted Graph?

G = (V, E, w)

 A finite set of vertices, nodes V

What is a Weighted Graph?

G = (V, E, w)

- A finite set of vertices, nodes V
- A subset of edges
 E ⊆ V × V

What is a Weighted Graph?

- A finite set of vertices, nodes V
- A subset of edges
 E ⊆ V × V
- A weight function $w(u, v) : E \to \mathcal{R}_+$

What is a Weighted Graph?

- A finite set of vertices, nodes V
- A subset of edges
 E ⊆ V × V
- A weight function $w(u, v) : E \to \mathcal{R}_+$
- G is undirected, connected, no self loop

Why Use Graph Representation?

Image:

Operators?

 $G = (V, E, w); f : V \rightarrow \mathcal{R}_+$

$$G = (V, E, w); \quad f: V \to \mathcal{R}_+; \quad \forall u, v \in V; \quad \forall (u, v) \in E$$

Edge Derivative and Difference Operator

$$\partial_{v}f(u) = \left.\frac{\partial f}{\partial(u,v)}\right|_{v} = (df)(u,v) = \sqrt{w(u,v)}(f(v) - f(u))$$

$$G = (V, E, w); \quad f: V \to \mathcal{R}_+; \quad \forall u, v \in V; \quad \forall (u, v) \in E$$

Edge Derivative and Difference Operator

$$\partial_{v}f(u) = \left.\frac{\partial f}{\partial(u,v)}\right|_{v} = (df)(u,v) = \sqrt{w(u,v)}(f(v) - f(u))$$

Gradient Operator

$$\nabla f(v) = (\partial_v f(u) : (u, v) \in E, u \sim v)^T$$

$$G = (V, E, w); \quad f: V \to \mathcal{R}_+; \quad \forall u, v \in V; \quad \forall (u, v) \in E$$

Edge Derivative and Difference Operator

$$\partial_{v}f(u) = \left.\frac{\partial f}{\partial(u,v)}\right|_{v} = (df)(u,v) = \sqrt{w(u,v)}(f(v) - f(u))$$

Gradient Operator

$$\nabla f(v) = (\partial_v f(u) : (u, v) \in E, u \sim v)^T$$

The Norm of the Gradient Operator $||\nabla f(v)|| = \sqrt{\sum_{u \sim v} (\partial_v f(u))^2} = \sqrt{\sum_{u \sim v} w(u, v)(f(v) - f(u))^2}$

Weighted Graph Based Regularization?

$$G = (V, E, w)$$

Vision and Image Analysis Group/university of caen

Weighted Graph Based Regularization?

$$G = (V, E, w)$$

Optimization Problem

$$\min_{f} \left\{ E_{p}(f, f^{0}, \lambda) = \sum_{v \in V} \|\nabla f(v)\|^{p} + \lambda \|f - f^{0}\|^{2} \right\}$$

Vision and Image Analysis Group/university of caen

Weighted Graph Based Regularization?

$$G = (V, E, w)$$

Optimization Problem

$$\min_{f} \left\{ E_{p}(f, f^{0}, \lambda) = \sum_{v \in V} \|\nabla f(v)\|^{p} + \lambda \|f - f^{0}\|^{2} \right\}$$

Solutions for p = 1 and p = 2

$$\left. \frac{\partial E_p}{\partial f} \right|_V = (\Delta_p f)(v) + 2\lambda(f(v) - f^0(v)) = 0, \quad \forall v \in V.$$

Vision and Image Analysis Group/university of caen

Weighted Graph Based Regularization?

G = (V, E, w)

Optimization Problem

$$\min_{f} \left\{ E_{p}(f, f^{0}, \lambda) = \sum_{v \in V} \|\nabla f(v)\|^{p} + \lambda \|f - f^{0}\|^{2} \right\}$$

Solutions for
$$p = 1$$
 and $p = 2$
$$\frac{\partial E_p}{\partial f}\Big|_{v} = (\Delta_p f)(v) + 2\lambda(f(v) - f^0(v)) = 0, \quad \forall v \in V.$$

Gauss-Jacobi and $p = 2 (\Delta_2 f(v))$: Graph Laplacian Operator) $\begin{cases}
f^0 = f \\
f^{t+1}(v) = \frac{1}{\lambda + \sum\limits_{u \sim v} w(u,v)} \left(\lambda f^0(v) + \sum\limits_{u \sim v} w(u,v) f^t(u)\right), & \forall v \in V.
\end{cases}$

Graph Based Regularization is Not New...

M. Belkin et al.

Manifold Regularization: a Geometric Framework for Learning from Examples.

Journal of Machine Learning Research, 2007, to appear.

- D. Zhou and B. Schölkopf Semi-Supervised Learning. Discrete Regularization, MIT Press, 221–232, 2006.
- O. Lezoray and S. Bougleux and A. Elmoataz
 Graph Regularization For Color Image Processing.
 Computer Vision and Image Understanding 107(1–2): 38–55, 2007.

Application in Filtering...

G = (V, E, w)

- Vertices = Data points
- Each vertex is described by a vector of K features

Filtering by Regularization

G = (V, E, w)

- Vertices = Data points
- Each vertex is described by a vector of K features

Filtering by Regularization

K independent regularization $\forall i \in [1, K]$:

$$\begin{cases} I_i^{*} = I_i \\ f_i^{t+1}(v) = \frac{1}{\lambda + \sum_{u \sim v} w(u, v)} \left(\lambda f_i^0(v) + \sum_{u \sim v} w(u, v) f_i^t(u) \right), & \forall v \in V. \end{cases}$$

Image Filtering: Classical Example

Corrupted Images

Image Filtering: Classical Example

Corrupted Images

Filtered Images by Regularization, G=8-connectivity grid graph

Data Set Filtering: A Toy Example

Data Set Filtering: A Toy Example

$$\label{eq:G} \begin{split} \mathsf{G} &= \mathsf{Fully} \text{ connected} \\ \mathsf{graph} \end{split}$$

Data Set Filtering: UCI Data Bases

Original Data

Data Set Filtering: UCI Data Bases

Filtering Results by Regularization

Application in Semi-Supervised Classification...

Semi Supervised Classification by Regularization (1)

G = (V, E, w)

- Vertices = Data points
- Classification of K classes problem
- Initial labels $C = \{c_i, i \in [1, K]\}$

Semi Supervised Classification by Regularization (1)

G = (V, E, w)

- Vertices = Data points
- Classification of K classes problem
- Initial labels $C = \{c_i, i \in [1, K]\}$

$$\forall i \in [1, K] : \\ \begin{cases} f_i^0(v) = +1 & \text{if } v \in c_i \text{ with } i \in [1, K], \quad \forall v \in C, \\ f_i^0(v) = -1 & \text{otherwise}, \\ f_i^0(v) = 0 & \forall v \in \{V \setminus C\}, \end{cases}$$

Semi Supervised Classification by Regularization (2)

Classification by Regularization: Label Propagation

K independent regularization: $\forall i \in [1, K]$ $f_i^{t+1}(v) = \frac{1}{\lambda + \sum_{u \geq v} w(u, v)} \left(\lambda f_i^0(v) + \sum_{u \sim v} w(u, v) f_i^t(u) \right), \quad \forall v \in V.$

Decision Function

$$C(v) = \operatorname{argmax}_{\sum_{i} f_{i}(v)}^{f_{i}(v)} \quad \forall v \in V.$$

The Two Moons Example

Image Semi Supervised Segmentation (1)

User Marked Images

Image Semi Supervised Segmentation (1)

Applications in Image and Data Set

Segmentation Results

Image Semi Supervised Segmentation (2)

User Marked Images

Image Semi Supervised Segmentation (2)

User Marked Images

Applications in Image and Data Set

Segmentation Results

Summary

 Weighted Graph Based Regularization Framework: solve filtering and semi-supervised classification in a same way

Summary

- Weighted Graph Based Regularization Framework: solve filtering and semi-supervised classification in a same way
- Apply image processing methods on data sets
- Apply data sets processing methods on images

Summary

- Weighted Graph Based Regularization Framework: solve filtering and semi-supervised classification in a same way
- Apply image processing methods on data sets
- Apply data sets processing methods on images

Future Work

- Demonstrate the benefits of data sets filtering on classification accuracies: A new machine learning pre processing method
- Extends the semi-supervised classification concept for images or objects categorization

