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Outline

Weighted Graph Based Regularization Framework

Applications in Image and Data Set
m Filtering
m Semi-supervised classification
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What are the Main ldeas?

From. ..
m Image processing: filtering, denoising
m Data set processing: semi-supervised classification
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What are the Main ldeas?

From. ..
m Image processing: filtering, denoising
m Data set processing: semi-supervised classification

Therefore. . .

m Why not to use image filtering methods on data sets?

m Why not to use semi-supervised classification methods on
images?

m How can we solve these two apparently dissimilar tasks within
a same framework?

How?

m Weighted graph structure

m Functional regularization based on diffusion processes
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Siisian,
I Graphs and Regularization Framework

Some basis and notations on graphs. ..

Weighted Graph Based Regularization Framework q
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What is a Weighted Graph?

A finite set of
G (VE -
(V.Ew) vertices, nodes V
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What is a Weighted Graph?

m A finite set of
vertices, nodes V

m A subset of edges
ECVxXxV

m A weight function
w(u,v): E— Ry

Weighted Graph Based Regularization Framework q
GBR Pascal WS'07 5/21 Vinh Thong Ta l.




d Image Analysis Group / university of caen

What is a Weighted Graph?

m A finite set of
vertices, nodes V

m A subset of edges
ECVXxV

m A weight function
w(u,v): E— Ry

m G is undirected,

connected, no self
loop
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Why Use Graph Representation?

Image:
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Operators?
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Operators?

G=(V,E,w), f:V—-Ry;, VuveV;, VY(uv)eE

Edge Derivative and Difference Operator

0 f(u) = 5iawy| = (dN)(u,v) = /w(u,V)(F(v) = f(u))
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Operators?

G=(V,E,w), f:V—-Ry;, VuveV;, VY(uv)eE

Edge Derivative and Difference Operator

0 f(u) = 5iawy| = (dN)(u,v) = /w(u,V)(F(v) = f(u))

Gradient Operator
Vi(v)=(0,f(u): (u,v) € E,u~v)T
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Operators?

G=(V,E,w), f:V—-Ry;, VuveV;, VY(uv)eE

Edge Derivative and Difference Operator

0 f(u) = 5iawy| = (dN)(u,v) = /w(u,V)(F(v) = f(u))

Gradient Operator
Vi(v)= (0,f(u): (u,v) € E,u~v)T

The Norm of the Gradient Operator

IVEWI = [ 22 (0uf(u))? = |22 wlu, v)(F(v) = f(u))?

ur~v ur~v

Weighted Graph Based Regularization Framework
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Weighted Graph Based Regularization?

Weighted Graph Based Regularization Framework q
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Weighted Graph Based Regularization?

G=(V,E,w)
Optimization Problem

min { E5(, %, A) = Xyev VAP + AlIF = 212}
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e Weighted Graph Based Regularization?

G=(V,E,w)
Optimization Problem
min { E5(, %, A) = Xyev VAP + AlIF = 212}

Solutions for p =1 and p =2

52| = (BN +2M(F(v) - F(v)) =0, Wve V.
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Weighted Graph Based Regularization?

G=(V,E,w)
Optimization Problem
min { E5(, %, A) = Xyev VAP + AlIF = 212}

Solutions for p =1 and p =2
%%V:(AJXW+QMﬂyy—WWD:0,VveV.

Gauss-Jacobi and p =2 (A,f(v): Graph Laplacian Operator)

=7
{ ““W)zxrfﬁmﬂ<xﬂwy+zpwmvy%@),vvev,

ur~v ur~v
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i Graph Based Regularization is Not New. ..

M. Belkin et al.
Manifold Regularization: a Geometric Framework for Learning
from Examples.
Journal of Machine Learning Research, 2007, to appear.

D. Zhou and B. Schélkopf
Semi-Supervised Learning.
Discrete Regularization, MIT Press, 221-232, 2006.

O. Lezoray and S. Bougleux and A. Elmoataz
Graph Regularization For Color Image Processing.
Computer Vision and Image Understanding 107(1-2): 38-55,
2007.
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GBR Pascal WS'07 9/21 Vinh Thong Ta | O




Vision and Image Analysis Group / university of caen

Applications

Application in Filtering. ..

Applications in Image and Data Set q
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e Filtering by Regularization

G=(V,E,w)

m Vertices = Data points
m Each vertex is described by a vector of K features

Applications in Image and Data Set q
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Filtering by Regularization

G=(V,E,w)

m Vertices = Data points
m Each vertex is described by a vector of K features

Filtering by Regularization

K independent regularization

Vie[l,K]:
=

(M0 + 5 wiw i), wev.

ur~v

fiHI(V) = 3 zlw(u_,v)

ur~v

Applications in Image and Data Set qzﬁ
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Image Filtering: Classical Example

Corrupted Images

Applications in Image and Data Set qg
GBR Pascal WS'07 12 /21 Vinh Thong Ta LVH;



n and Image Analysis Gm"l’/university of caen

Image Filtering: Classical Example

Corrupted Images

Filtered Images by Regularization, G=8-connectivity grid graph

4/
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Data Set Filtering: A Toy Example

Applications in Image and Data Set q
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Data Set Filtering: A Toy Example

Original Data Corrupted Data
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Data Set Filtering: A Toy Example

Original Data Corrupted Data Filtering Result
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G = Fully connected
graph
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Data Set Filtering: UCI Data Bases

Iris: ‘ Wine:

Applications in Image and Data Set qw
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drii: Data Set Filtering: UCI Data Bases

Iris: ‘ Wine:

Filtering Results by Regularization

Iris: : Wine:
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i Applications

Application in Semi-Supervised
Classification. . .
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Semi Supervised Classification by Regularization (1)

G=(V,E,w)

m Vertices = Data points
m Classification of K classes problem
m Initial labels C = {¢;,i € [1, K]}
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Semi Supervised Classification by Regularization (1)

G=(V,E,w)

m Vertices = Data points

m Classification of K classes problem

m Initial labels C = {¢;,i € [1, K]}

mVie[lK]:
fo( )=+1 if veg withie[l,K], VveC,
fO(v) = —1 otherwise,
P()=0 Wwe{v\C},
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Semi Supervised Classification by Regularization (2)

Classification by Regularization: Label Propagation

K independent regularization: Vi € [1, K]
f(v) = m <)\fi0(v) + > w(u, v)ff(u)) , YveV.

urv ur~v
Decision Function

C(v) = argmax% YveV.

Applications in Image and Data Set q?
GBR Pascal WS'07 17 /21 Vinh Thong Ta l’




Vision and Image Analysis Group / university of caen
Tecsgintati

The Two Moons Example

e J X
- o
. »?“ngﬁi X%
< % 30 o8 Sy
.
o R
X A &

Applications in Image and Data Set

GBR Pascal WS'07

18 / 21

VinhlThong Ta l’l5

£



Vision
rocaagi

d Image Analysis Group / university of caen

The Two Moons Example

Original Data Initial Labels
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G = Fully Connected
Graph
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Classification

The Two Moons Example

Fully Connected

Initial Labels

G
Graph
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Image Semi Supervised Segmentation (1)

Applications in Image and Data Set qz
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Image Semi Supervised Segmentation (1)

User Marked Images Segmentation Results

Applications in Image and Data Set IE
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Image Semi Supervised Segmentation (2)

User Marked Images
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Image Semi Supervised Segmentation (2)

User Marked Images Segmentation Results
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Conclusion

Summary

m Weighted Graph Based Regularization Framework: solve
filtering and semi-supervised classification in a same way
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Conclusion

Summary

m Weighted Graph Based Regularization Framework: solve
filtering and semi-supervised classification in a same way

m Apply image processing methods on data sets

m Apply data sets processing methods on images

Future Work

m Demonstrate the benefits of data sets filtering on classification
accuracies: A new machine learning pre processing method

m Extends the semi-supervised classification concept for images
or objects categorization
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